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Abstract— The advancement of green light-emitting diodes 

(green-LEDs) is essential for full-colour displays and efficient 

solid-state lighting. However, optimizing the internal quantum 

efficiency (IQE) of LEDs remains a complex challenge due to the 

interplay of numerous material and structural factors. This study 

explores the application of machine learning techniques to 

optimize the IQE of green-LEDs, using large datasets and 

advanced algorithms to uncover patterns and suggest optimal 

configurations. 
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I. INTRODUCTION 

InGaN-based LEDs play a crucial role across various 
applications, ranging from efficient general lighting to vibrant 
full-colour displays. Despite their broad utility, achieving 
maximum internal quantum efficiency (IQE) remains a 
formidable challenge due to the numerous interdependent 
factors influencing performance [1]. These include material 
composition, crystal quality, defect densities, and device 
structure, all of which contribute to the complex nature of 
performance optimization. Machine learning (ML) presents a 
promising solution to navigate this complexity by offering 
sophisticated tools for analyzing extensive datasets, modelling 
intricate relationships, and predicting optimal configurations. 
ML insights can significantly streamline experimental efforts, 
minimizing the trial-and-error approach inherent in traditional 
methods and accelerating the advancement of high-efficiency 
LEDs. 

In this research, we leveraged ML models to address the 
well-known Green-gap phenomenon. These models were 
trained on data generated from One-dimensional Schrödinger–
Poisson drift-diffusion solver simulations [2], and their accuracy 
and robustness were evaluated using root mean square error 
(RMSE). Notably, ML facilitated a systematic exploration of 
critical parameters in green-LED design, providing valuable 
insights for future theoretical and experimental investigations. 

II. DEVICE STRUCTURE 

     Fig. 1 represents the schematic of a typical InGaN based-

LED structure and the various critical parameters. This reference 

LED  includes a 200 nm thick Si-doped (5 × 1018 cm-3) GaN 

layer, followed by six pairs of multiple quantum wells (MQWs), 

each consisting of a 3 nm thick In0.24Ga0.76N QW and a 30 nm 

thick GaN barrier. This is followed by a 50 nm thick p- 

Al0.3Ga0.7N  electron-blocking layer (EBL) and a 150 nm thick 

Mg-doped (2 × 1019 cm-3) GaN layer.  

  

Fig. 1. Reference device structure with a valid defined range of variation for 

critical parameters. 

III. MODEL SELECTION  

Data for this study were collected from a range of simulation 
results, encompassing various critical parameters as illustrated 
in Fig. 1. The dataset was split into training and validation sets, 
with 20% reserved for validation, followed by hyperparameter 
tuning using cross-validation to ensure the robustness of the 
models. As shown in Fig. 2 (a) and (b), the tree-based Random 
Forest model consistently demonstrated superior performance 
compared to other models in predicting IQE, achieving the 
minimum RMSE value, which is defined as 
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where, 	
�������� and 	
�������  represent the IQE predicted 

by the ML model and the simulated IQE, respectively, and N 
denotes the number of IQE data points in the training dataset. 

IV. RESULTS AND DISCUSSION 

     The optimization process starts with a default design of the 

reference-LED structure, achieving a maximum IQE of 65.2% 

and an emission wavelength of ~520 nm. 
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Fig. 2. (a) Represents the comparison of RMSE for different ML models, and 
(b) IQE predicted values from the Random Forest model with the actual values. 
 

a) Optimum Design of EBL 

     As depicted in Fig. 3 (a), it is evident that IQE is strongly 

dependent on the EBL composition. Initially, as the Al-

composition increases, the IQE improves due to enhanced 

electron confinement and a reduction in electron leakage. 

However, beyond a certain point, further increases in Al-

composition result in a sharp decline in IQE, eventually 

approaching zero when the Al-composition reaches 100% 

(AlN). This sharp decline is attributed to the excessive increase 

in the effective potential barrier height for holes at 

corresponding EBL. When the barrier height  becomes too high, 

holes are unable to reach the active region, thereby preventing 

them from participating in the radiative recombination process 

with electrons. This underscores the importance of optimizing 

EBL composition to balance electron confinement, leakage 

electron, and hole injection efficiency, ensuring maximum IQE. 

As shown in Fig. 3 (b), the IQE saturates with respect to 

thickness after ~15 nm, indicating that beyond this point, further 

increases in EBL thickness do not impact the IQE value. This 

suggests that optimizing the EBL thickness to around 15 nm is 

sufficient for maximizing IQE, as additional thickness does not 

contribute to performance improvements.  

     The doping concentration of the EBL also plays a crucial role 

in improving its effectiveness. It has been observed, through ML 

analysis, that varying the p-type doping concentration 1 × 1017 

cm-3 to 2 × 1019 cm-3 reveals an optimal p-type doping level that 

matches the doping level of the p-GaN layer. 

b) Optimum Design for Active Region 

      QW thickness directly influences the optical and electrical 
properties of the LED, including its emission wavelength and 
carrier confinement. Conventional c-plane LEDs typically 
utilize QWs thickness ranging from 1.5 to 4.0 nm. Optimal QW 
thickness is essential for achieving efficient electron-hole 
recombination, thereby maximizing the  IQE for a target 

wavelength. Thinner QWs result in shorter emission 
wavelengths, while thicker QWs induce a stronger quantum-
confined Stark effect, leading to longer wavelengths for a given 
In-content. For a target emission wavelength of 520 nm, ML 
optimization suggests an ideal QW thickness of 2.566 nm, as 
shown in Fig. 4 (a). Moreover, barrier thickness plays a crucial 
role in carrier confinement within the MQW by providing an 
adequate barrier to electrons, and it also impacts the current-
voltage characteristics of the LED. ML optimization indicates 
that an ideal barrier thickness of  ~9 nm is optimal for achieving 
the target emission wavelength with maximum IQE, as 
demonstrated in Fig. 4 (b). 

     Lastly, precise adjustments of critical parameters were made 
as suggested by the ML model. We simulated an optimized 
structure with these parameters, resulting in a significant 
improvement in IQE and reduced efficiency droop compared to 
the default design of the reference LED, as illustrated in Fig. 5. 

 

V. CONCLUSION 

     This paper demonstrates how integrating ML accelerates the 

quest for high-efficiency LEDs, surpassing traditional trial-and-

error methods. Traditional approaches often struggle due to the 

nonlinear and high-dimensional nature of various critical 

parameters in optoelectronic device design. By leveraging ML, 

precise adjustments of critical parameters within their defined 

ranges significantly enhance IQE by 32% compared to the 

Reference LED. 
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Fig. 3. (a) Predicted IQE curve for EBL (a) composition, and (b) thickness. 

The red dot represents the optimal value. 

       
Fig. 4. (a) Predicted IQE curve for the active region: (a) QW thickness, and 

(b) barrier thickness. The red dot represents the optimal value. 

 
 

Fig. 5. Calculated IQE of ML-based Optimized-LED Compared to the 

Reference-LED structure with mentioned optimal Critical parameters in the 
box. 
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