Empirical tight-binding parameterizations for
accurate heterostructure and alloy calculations
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Abstract—Empirical tight-binding is a valuable and reliable
tool for the calculation of electronic and optical properties in
semiconductor heterostructures and alloys. It has been applied
in many contexts, ranging from inorganic semiconductors like
arsenides, antimonides, nitrides and their alloys to 2D mate-
rials and hybrid perovskites. Here we present recent activities
in development and application of empirical tight-binding, in
particular regarding disordered alloys. We show some limitations
of the most used schemes, and how they can be overcome by
more recent parameterizations, and we introduce an alternative
machine-learning based parameterization scheme.

Index Terms—empirical tight-binding, alloys, parameteriza-
tion, machin-learning

I. INTRODUCTION

Empirical tight-binding (ETB) has proven to be extremely
useful for the simulation of optoelectronic devices, when de-
tails of the atomistic structure matter, but ab-initio approaches
like DFT are not feasible. ETB has been used in the last
decades in particular for studying random alloy and disorder
effects in Ill-nitrides, like InGaN quantum-well structures, and
for III-V based alloys [1, 2].

A popular ETB parameterization for III-Vs and IIl-nitrides
is due to Jancu and co-workers [3]. It uses an orthogonal,
nearest-neighbor sp>d®s* parameterization, with Harrison scal-
ing for the bond-length dependence of the hopping parameters,
and the onsite parameters for common atoms inside of material
families are nearly consistent. We regard this latter property as
important, as it relates to the transferability of the parameters
and therefore their applicability in alloy and heterostructure
calculations.

A common feature of ETB models is that the empirical
parameters are usually found by fitting the ETB bandstructure
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obtained for pure bulk materials to DFT data. Depending
on how this is done exactly can lead to ambiguities when
transferring the parameters to alloys and heterostructure. We
recently found, that the parameterization from Ref. [3] well
reproduce alloy band gaps and bowing for group-III alloying,
but less so for group-V alloying [4]. One of the major reasons
for this seems to be that in the most prominent ETB schemes
the local Hamiltonian depends on the local atomic environment
only via the hopping matrix elements (both due to the atom
types and due to bond length scaling), while onsite matrix
elements are fixed. However, it can be expected that variations
in the atomic environment from the pure bulk material induces
modifications both in onsite and hopping matrix elements.
Indeed, several corrections to ETB have been proposed in such
directions (see [4] and references therein).

Recently, a new ETB scheme has been presented that
overcomes most of the above limitations [5]. It is based
on a multipole expansion of the atomic potentials, which
allows to introduce environment-dependent corrections to the
Hamiltonian matrix elements based both on atomic species
and atomic positions surrounding each atom.

II. RESULTS AND FUTURE DEVELOPMENTS

As shown in Fig. 1 for the examples of InGaSb and InAsSb,
the scheme described before can reproduce alloy band gaps
and bowing even where the parameterization of Jancu [3] fails,
which is explained mainly by increased transferability.

The gain in fidelity is paid, however, by a distinct increase
in number of empirical parameters and a more complex fitting
procedure. In fact, the complete family of materials, like
(Al,Ga,In)(As,P,Sb), should be fitted at once, because the bare
onsite parameters have to be consistent, and all necessary
combinations of binary materials need to be described. As
an alternative, we explored the possibility to employ Machine
Learning (ML) to learn environment dependent corrections to
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Fig. 1. Band gap of InGaSb (left) and InAsSb (right) alloys, calculated with ETB schemes from [3] (blue) and [5] (red), in comparison with experimental
data. The energy shift is due to the fact that Jancu’s parameters are fitted for O K. Figures are from [4] under Creative Commons CC-BY.

the ETB Hamiltonian obtained using a standard parameteriza-
tion [6]. After the critical step of identifying a suitable descrip-
tor using moment tensors, a neural network has been trained
on a minimal set of DFT calculations on small alloy supercells.
The output values of the network in our test implementation
were the four diagonal, orbital-wise energy corrections. We
have observed that this approach allows to reliably reproduce
the band gap bowing, as shown for the example of GaAsSb
in Fig. 2, even though the training data itself due to the
small supercell size did not reproduce the correct bowing.
Note that also in this case Jancu’s parameterization heavily
underestimates bowing.
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Fig. 2. Band gap of GaAsSb calculated with a machine-learning corrected
ETB scheme (red), compared with experimental data and DFT calculations.
Figure taken from [6] under Creative Commons CC-BY.

This shows the importance of environment-dependent cor-
rections also in the onsite blocks of the ETB Hamiltonian.
As a conclusion, a reliable ETB scheme with predictive
capability for alloy and heterostructure properties requires

parameterizations beyond the standard schemes. In particular,
a suitable environment dependency is needed, which can be
obtained either by expanding the parameter set and improving
physical meaning of the empirically calculated Hamiltonian
matrix elements, or by directly learning local corrections.
In this latter case, it appears that the training space is not
necessarily large. In both cases, the parameterization requires
care, in order to guarantee the required transferability.
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