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Abstract—We propose a method based on particle swarm
optimization for the extraction of VCSELs rate-equation model
parameters from experimental power and S21 measurements.
The method is shown to reliably predict a set of parameters for
accurate reproduction of the measured curves.
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Optimization

I. INTRODUCTION

Vertical-Cavity Surface-Emitting Lasers (VCSELs) are expe-
riencing an ever-growing success due to multiple inherent
features, such as low threshold current, high quantum effi-
ciency, and high-speed modulation at low current[1]. Due to
these advantages, VCSELs are becoming popular choices in
a wide spectrum of applications, ranging from data commu-
nication to optical sensing. However, modeling their behavior
is complicated: thermal effects such as thermal rollover, and
complex physical effects, such as spatial hole burning, must be
taken into account [2] for a reliable description of the device.
Then, the extraction of fitting parameters from experimental
measurements of a potentially unknown device (for instance,
for subsequent numerical circuit-level simulations) is difficult.

For this purpose, instead of using time-consuming brute-
force approaches or resource-intensive machine learning (ML)
methods, where hundreds of thousands of good-quality sam-
ples are required to effectively train the network, an optimiza-
tion algorithm could be chosen to perform one-off parameter
extraction from the experimental reference directly. In this
work, we expand the work of [3], by applying a refined
PSO algorithm [4] to a set of experimental L-I and S21
response measurements of a a GaAs/AlGaAs 850 nm VCSEL,
characterized by a 1λ-cavity with three 8 nm GaAs quantum
wells [5, 6], thus demonstrating that this approach can perform
accurate predictions even when dealing with non-ideal curves.

II. VCSEL MODEL AND EXTRACTION ALGORITHM

In this work, since we are targeting fast numerical simulations,
we employ a rate equation-based model [2], which captures
both the evolution over time of carrier populations and pho-
tons, and the thermal effects by means of three empirical
equations describing the temperature dependencies.

This model introduces the spatial dependency of the car-
rier and photon numbers by considering a two-term Bessel

expansion of the carriers distribution in the radial direction r:

N(r, t) = N0(t)−N1(t)J0(σ1r/R) (1)

with σ1 first nonzero root of J1, J0 and J1 Bessel functions
of the first kind, and R effective radius of the active layer.
The temporal evolution of the expansion coefficients N0(t)
and N1(t) is given by the following spatially independent rate
equations:
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with Ñ = N0−Ntr(T ), ηi injection efficiency, I bias current, q
electron charge, τn carrier lifetime, T temperature, G(T ) gain
coefficient, Ntr(T ) transparency carrier number, Il(N0, T )
leakage current, ϵ gain compression factor, hdiff diffusion
coefficient. The coefficients γ00, γ01, ϕ100, ϕ101 quantify the
overlap between the fundamental transverse mode and the
active region. The termal effects are introduced by an equation
that describes the thermal evolution of the temperature in the
device and by a set of empirical equations for gain coefficient,
transparency carrier number, and leakage current [3]:

T = Tamb + (IV − Pout)Rth − τth
dT
dt

(4)

with V applied voltage, Tamb ambient temperature, Rth ther-
mal impedance, and τth thermal time constant. Finally,
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contain fitting parameters that can be independently extracted
to describe the thermal behavior.

The goal of this analysis is to extract from the L-I and
small signal measurements a set of 20 parameters to accurately
reproduce the behavior of the device under test. Table I reports
the 20 target parameters, together with their associated ranges
for the bounded optimization procedure.

Particle Swarm Optimization (PSO) is a cooperative evolu-
tionary algorithm where a set of N agents, called “particles”,



TABLE I: Investigated VCSEL parameters and their ranges for the bounded extraction.

Parameters Range Parameters Range
Injection efficiency ηi 0.70 to 1.00 Transp. num. N ′

tr0
2.00× 106 to 1.00× 108

Power coeff. kf (nW) 10.00 to 60.00 Transp. num. coeff. C′
n1

(kK−1) −100.00 to −1.00

Carrier lifetime τn (ns) 0.50 to 5.00 Transp. num. coeff. C′
n2

(kK−2) 0.00 to 100.00
Photon lifetime τp (ps) 1.50 to 3.50 Leakage current factor Il0 (A) 1.00 to 2.00
Gain coeff. G′

0 (ms−1) −360.0 to −11.1 Leakage current coeff. a0 (K) 2.00× 103 to 1.00× 104

Gain coeff. a′g1 (kK−1) −5.00 to −0.50 Leakage current coeff. a1 (K) 0.00 to 3.00× 10−4

Gain coeff. a′g2 (kK−2) −50.00 to −2.00 Leakage current coeff. a2 1.00× 10−9 to 4.00× 10−8

Gain coeff. b′g1 (kK−1) −100 to 0 Diffusion parameter hdiff 1.00 to 20.00

Gain coeff. b′g2 (kK−2) 5.56 to 900.0 Thermal impedance Rth (K/W) 5.00× 102 to 8.00× 103

Gain saturation factor ϵ 1× 10−6 to 3× 10−6 Spont. emission coeff. βsp 1× 10−5 to 9× 10−6

Fig. 1: PSO predictions (solid lines) compared with measurements (circles) for L-I curves [5] (a) and S21 responses [6] (b).

move in a M -dimensional solution space [7], where M = 20
is the number of variables to optimize. The movement of
the particles depends both on a personal tendency to explore
the space and on a social pull towards the best position
encountered by the population. This is implemented with two
simple equations, that describe the velocity and position of the
j-th particle at iteration k + 1:
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with ci inertia coefficient, cc cognitive acceleration coefficient,
cs social acceleration coefficient, r1 and r2 random scaling
factors, pk

j personal best position for the j-th particle, and
pk
gl global best position. Like any other stochastic optimiza-

tion algorithms, PSO suffers from the exploitation-exploration
trade-off: if the particles focus too much on exploration (high
cc), we will never reach convergence; if the the particles focus
too much on exploitation (high cs), we will have premature
convergence to a local minimum, which does not represent our
target solution. Many different solutions have been proposed
to mitigate this effect. One of them is a variation of the
PSO called Adaptive PSO [4], which consists of dynamically
adapting the acceleration coefficients during the optimization.

The optimization target are three experimental L-I curves
[5] at T = 20 ◦C, 50 ◦C, and 80 ◦C, and four experimental
S21 responses [6] measured at four different combinations of
temperatures and currents (I=1mA and 3mA, for T=20 ◦C
and 50 ◦C). The algorithm tries to minimize the loss computed
as the average of the errors between the reference curves and
the predicted ones, computed as ||yref − ypred||/||yref ||.

III. RESULTS AND DISCUSSION

Fig. 1 reports the reference curves [5, 6] and the curves
generated with the predicted parameters for the L-I curves
(a) and the S21 responses (b). We successfully captured the
threshold, slope, and thermal roll-off of the L-I curves, as
well as the peak frequency and the -3 dB bandwidth of
the S21 responses. The minor discrepancies with the data
can be attributed to measurement noise and the simplicity of
the rate-equation based model that we used. Although this
model cannot capture higher-order effects, it is essential for
demonstrating the validity of the PSO-based approach and for
system-level simulations in general.
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