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Zak phase of a 1D topological photonic crystal by 
Finite-Difference Time-Domain simulation 
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Abstract—Topological properties of one-dimensional 

periodic systems are characterized by the Zak phase, which is 

essential for describing protected edge or surface states that are 

robust against disorder and perturbations. Here, we explicitly 

calculate the Zak phases of a one-dimensional topological 

photonic crystal with guided-mode resonance using the Finite-

Difference Time-Domain method. The retrieved time-dependent 

Zak phases are found to be zero for trivial and π for nontrivial 

photonic crystals respectively, which ensures the bulk-edge 

correspondence, even in a non-Hermitian condition.  
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I. INTRODUCTION  

Recently, there has been a number of demonstrations of 
topological photonic crystal lasers [1]. While most of these are 
implemented in 2D photonic crystal (PhC) lattices, one-
dimensional (1D) structures stand out due to their small mode 
volume and single mode operation [2]. The topological 
properties of bulk materials are determined by topological 
invariants such as the Chern number and the Berry phase [3]. 
In one-dimensional (1D) periodic systems under Hermitian 
conditions, this is the Zak phase as the 1D variant of the Berry 
phase, which has quantized values of 0 or π [4].  

The commonly employed 1D topological models, though, 
do not always ensure bulk-edge correspondence under non-
Hermitian conditions. Here we focus on a photonic non-
Hermitian structure, which has seen a number of 
demonstrations such as topological photonic lasers. We 
develop a model that addresses the validity of the bulk-edge 
correspondence for the case of a 1D semiconductor photonic 
crystal. This allows us to gain a better understanding of the 
topological contribution of the lasing of photonic structures 
under leakage or pulsed pumping. 

We choose a 1D nanobeam PhC with guided-mode 
resonance implementing the Su–Schrieffer–Heeger (SSH) 
model. We use the finite-difference time-domain (FDTD) 
method to compute the electromagnetic fields as a function of 
time explicitly [5]. Thereby, the time-dependent Bloch modes 
of the magnetic field Hz within the first Brillouin zone (BZ) 
can be obtained. The resultant Zak phases for both trivial and 
nontrivial photonic structures are numerically calculated. By 
considering the temporal evolution of the magnetic fields, we 
obtain the stationary and dynamic Zak phases, which show a 

topological feature of the photonic structure under a non-
stationary and non-Hermitian condition. 

II. SIMULATION METHOD 

The 1D SSH model consists of dimerized holes within the 
slab structure, as illustrated in Fig. 1 [6]. Two distinct unit 
cells with an inversion symmetry are designed. The dimerized 
holes in the unit cell are arranged in two ways, either the 
normalized distance d is less than 0.5 (unit cell A) and greater 
than 0.5 (unit cell B). As a first step, we calculated the 
photonic band structure of the PhC slab using the Ansys-
Lumerical FDTD solver. The parameters used in the 
simulation are as follows; The lattice constant ax = 270 nm, 
the hole width w = 54 nm, the hole length y = 162 nm, the slab 
height h = 172.8 nm, the slab index n = 3.4 

 

Fig. 1. Schematic of 1D PhC structure 

 

Fig. 2. Photonic bandstructure and transmission spectra for three 
conditions: 0 < d < 0.5, d = 0.5, and 0.5 < d < 1. 

Fig.2 depicts the topological characteristics of photonic band 
structures and transmission spectra of the top PhC lattice for 
three different d values. The blue region is the photonic 
bandgap where photons are not allowed. The bandgap at the 
band edge in the infinite structure(left) is identical to the one 
from the transmission spectrum of a finite structure consisting 
of 40 unit cells(right), to which we restrict further simulations. 



III. NUMERICAL RESULTS 

To calculate the Zak phase, we have to obtain Bloch 
modes in the PhC slab. In this system, Maxwell's equations 
can be expressed as the following eigenvalue problem [7]: 
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Hz(r)             (1) 

Owing to the periodicity of the PhC, the solutions of Eq. (1) 
can be expressed using the Bloch theorem, where uk (r) is the 
Bloch function with the lattice constant a.  
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The magnetic field (Hz) at the band edges for each PhC is 
depicted in the upper and lower right of Fig. 3. The Zak phase 
is given as an integral over the BZ: 
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Determining the Zak phase for arbitrary photonic structures 
necessitates a form of discretization. By dividing the Brillouin 
zone (BZ) into N equal intervals, the Zak phase for each band 
can be recast into the following form [8]: 
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This form assumes that the Bloch modes are steady-state. 
Within the simulation, we can choose an appropriate temporal 
apodization window to average out the magnetic fields to 
obtain Bloch modes and the Zak phases.  

 

Fig. 3. Photonic band structures and the magnetic field (Hz) mode profiles 
for PhCs composed of unit cells A and B, respectively. 

 

Fig. 4. Time evolution of the magnetic field (Hz)  k = 0.5 (green), k = 0.25 
(red), and k = 0 (blue) 

The Gaussian function with a full-width at half-maximum of 
250 fs is used as an apodization window, which provides 

sufficient temporal averaging over rapidly varying magnetic 
fields. Extracting the Bloch mode under the apodization time 
is shown in Fig. 4. Then we numerically calculate the Zak 
phases by substituting the Bloch function obtained from Eq. 
(2) into Eq. (4), as shown in Fig. 5. As expected, the nontrivial 
structure with 0.5 < d < 1 results in Zak phases of π, while it 
remains zero for the trivial structure. 

 

Fig. 5. Calculated Zak phases for Trivial (left) and Nontrivial (right) 
lattices. 

IV. CONCLUSION 

In summary, we conducted numerical simulations to 
determine the Zak phases of 1D PhC explicitly, under guided-
mode resonance and pulsed excitation as non-Hermitian 
conditions. This was achieved by discretizing Bloch magnetic 
fields in the first BZ. Our analysis revealed quantized values 
of 0 or π for trivial and nontrivial PhCs, respectively. Our 
result shows that non-Hermitian conditions such as pulsed 
excitation or leakage still maintain the topological nature of 
the system originating from bulk properties. 
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