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Abstract—We present a new theoretical model to study the
spontaneous formation of frequency combs in quantum cascade
lasers (QCLs). This model can reproduce comb emission in both
ring and Fabry-Perot (FP) cavities. It consists of a single complex
Ginzburg-Landau equation modified by a non-local integral term
that accounts for the coupling between forward and backward
fields in the FP configuration. The ring case is retrieved by setting
this integral term to zero. Numerical simulations based on this
model allow for reproducing numerous experimental features,
such as the coexistence of amplitude and frequency modulations,
linear chirp, and self-starting harmonic combs.

Index Terms—Optical frequency combs, Quantum Cascade
Laser, Fabry-Perot, Ring cavity

I. INTRODUCTION

The discovery of the spontaneous formation of optical
frequency combs (OFCs) in quantum cascade lasers (QCLs)
[1] has sparked a decade of intensive research, focusing on
experimental characterization, theoretical investigation of their
physical origins, and applications such as spectroscopy and
optical communications [2]. From a theoretical perspective,
models with reduced mathematical complexity have been
crucial in providing insight into the physical mechanisms
responsible for the formation of these OFCs [3], [4]. However,
there are still unresolved issues in the literature that require
further theoretical and modeling efforts, such as the origin
of harmonic frequency combs (HFCs), the presence of linear
chirp in mid-infrared (mid-IR) QCLs but not in terahertz
(THz) devices, and certain differences between ring and Fabry-
Perot (FP) combs [5]. We address some of these issues by
introducing a reduced model based on a modified complex
Ginzburg-Landau equation (CGLE) [6]. This model captures
the dynamics of both ring and FP configurations, allowing for
a comparative analysis between them. It is equivalent to two
coupled CGLEs in the FP case, and to a single conventional
CGLE in the ring case, in agreement with previous studies
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II. THEORETICAL MODEL

Starting from the ESMBEs for FP QCLs [10], under the
hypotheses of near-threshold operation and fast carriers, we

derive a reduced model consisting of two coupled CGLEs [6]:
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where F'* and F'~ are the counterpropagating field envelopes
inside the resonator, o is the ratio between polarization dephas-
ing time and photon lifetime, p is the normalized pump rate,
« is the LEF, T is the normalized gain bandwidth, and 7 and
t’ are the scaled spatial and temporal coordinates, respectively.
The coefficient K formally parametrizes the coupling between
F* and F~ due to SHB. K = 1 corresponds to the FP
case. The unidirectional ring case is retrieved by setting
F~ = 0 in Egs. (1)-(2), leading to a single CGLE [7]-[9].
We show that Eqgs. (1)-(2) are equivalent to a single modified
CGLE with periodic boundary conditions for the auxiliary

field = S0 fnem”("“/), where f,, are the modal
amplitudes of F* and F~, and «v,, = nw/L [11]:
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The non local integral term in Eq. (3), proportional to K,
accounts for the coupling between the counterpropagating
fields due to the SHB. The unidirectional ring case (single
conventional CGLE) is obtained by imposing K=0. We note
that while the equivalence between Eq. (3) and Egs. (1)-(2)
holds only for facet reflectivity R = 1, Egs. (1)-(2), as well as
the single CGLE for the ring, can be integrated for any value
of R. We remark that the full model ESMBEs and the reduced
model are in good qualitative agreement [6].
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Fig. 1. Temporal evolution of the normalized power for simulated regimes
obtained by solving Eq. (3) for different values of the coupling coefficient K.

III. NUMERICAL RESULTS

We investigate the role of the non local integral term in
Eq. (3) on the comb formation, by sweeping the coupling co-
efficient K between O (ring) and 1 (FP). The other parameters
are « = 1.15, ' = 0.06, and a cavity length L = 2 mm.
The temporal evolution of the reconstructed intensity is shown
for for the different K values in Fig. 1. We remark that
the model is effective in reproducing the OFC regimes in
general (for further details, see [6]). We observe the formation
of a second order HFC for K between 0 and 0.5, and a
transition to a fundamental OFC for K = 0.75. For K=1
(FP cavity) we also report a fundamental OFC. These results
indicate that the integral term is detrimental to the formation
of harmonic states, suggesting that HFC formation is favored
in the ring configuration compared to the FP. This is confirmed
by extensive numerical simulations performed for different
(cv, T) pairs, so that o € [1.1,1.3] and T € [0.03,0.15], b
integrating the two coupled CGLEs Egs. (1)-(2) with QCL
reflectivity R = 0.3. For each pair, the normalized pump
parameter p = i/ puny is swept between 1 and 2. The other
parameters are ¢ = 4.5 X 104, kept constant for both
configurations, L = 2 mm for the FP case and L = 4 mm
for the ring resonator to ensure the same free spectral range.
The parameter values used are typical for THz QCLs. The
results are presented in Fig. 2 We observe that harmonic
states occur more frequently in the ring cavity than in the FP
configuration. Moreover, the simulated ring QCL can generate
comb regimes with higher harmonic orders. Specifically, a
fourth-order HFC is observed in the ring configuration, while
the highest harmonic order reported in the FP configuration is
2. This study underscores the suitability of the presented model
for a comparative analysis of the two cavity configurations.
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Fig. 2. Maximum harmonic order of the combs reported for various («, I')
pairs in both FP and ring configurations.
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Fig. 3. Normalized power (left) and instantaneous frequency (right) for a
dynamical regime obtained with I' = 1, resembling typical traces of mid-IR
QCL combs [2], [5].

Finally, we report that adopting I' = 1, corresponding to a gain
curve width of 3.2 THz, we observe temporal traces consistent
with those experimentally reported for mid-IR QCLs [2], [5].
These traces exhibit spikes in the power trace and linear
chirp in the instantaneous frequency, as shown in Fig. 3. This
suggests that a broader gain bandwidth, characteristic of mid-
IR QCLs, plays a key role in observing linear chirp, a feature
not reported in THz QCLs which are known for narrower gain
curves [5].

IV. CONCLUSION

We have introduced a unified reduced model that describes
the frequency comb dynamics of both ring and FP QCLs using
a single spatiotemporal equation. This model successfully
replicates typical experimental features of frequency combs,
and its reduced mathematical complexity makes it suitable
for underlying physical mechanisms behind these observed
phenomena, and for running systematic simulations.
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