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Abstract- Modelling results are described that deal 

with the coupling of excitons in colloidal nanocrystals to 
silicon-based photonic crystal microcavities, and to the 
design of structures that couple the microcavities to 
ridge waveguides and input/output gratings that are 
realized on 200 mm diameter silicon-on-insulator wafers. 

 
SUMMARY 

 
Motivation and Background 

Microcavities of various designs, realized in high-index-
contrast semiconductor hosts such as GaAs, InP, and Si, 
offer high quality factors, Q, small mode volumes, V, and 
therefore attractive Q/V figures of merit for cavity quantum 
electrodynamic (CQED) research and applications. In 
epitaxial III-V materials, both micropillar (1D Bragg 
cavities etched into sub-micron diameter pillars), and planar 
photonic crystal type cavities containing InAs quantum dots 
have been used  to demonstrate strong coupling of excitons 
and cavity photons [1,2], single-photon sources [3], and 
resonant fluorescence [4,5]. 

The majority of this impressive work in chip-based 
CQED has so far been restricted to individual cavities.  One 
of the potential advantages of the chip-based approach is the 
inherent ability it affords to couple many such cavities to 
one another in optical “circuits”.  From an optical circuit 
perspective, the silicon, or more precisely the silicon-on-
insulator (SOI) material platform is attractive due to the 
relative ease of processing large wafers using industrial 
scale stepper technology, and therefore the ability to 
monolithically integrate photonic circuits [6] with CMOS 
electronic control circuitry. 

The challenge dealing with silicon in the CQED context 
lies in finding the equivalent to the InAs quantum dots that 
are so readily obtained in III-V materials using epitaxial 
growth.  Colloidal nanocrystals formed from PbSe or PbS 
are candidate sources of three dimensionally confined 
excitons that can be resonant with silicon based microcavity 
modes at wavelengths ~ 1.5 μm.  Their precise transition 
frequency is determined by quantum confinement effects, 
and can be tuned to this wavelength range by stopping their 
growth when the diameter of the nanocrystals is ~ 5 nm.  
While there are both technical challenges (developing 

processes for maintaining the excellent solution-based, room 
temperature photoluminescent (PL) yield when placed on 
silicon, in vacuum), and fundamental challenges 
(understanding the complex electronic structure and 
mechanisms that contribute to exciton dynamics), with this 
approach, one significant advantage of colloidal versus 
epitaxial quantum dots is their more robust behaviour at 
elevated temperatures, owing to the higher confining 
potential.    

Together with our collaborators who synthesize high-
quality colloidal nanocrystals, we have recently made 
significant progress in understanding the temperature 
dependent PL properties of solid films of PbSe nanocrystals 
emitting near 1.5 μm [7], and demonstrated temperature-
independent PL yield of PbSe/CdSe core-shell variants up to 
~ 240K [8].   

Using an atomic force microscope (AFM) lithography 
technique, these PbSe nanocrystals have also been site-
selectively placed at the antinode of microcavities formed in 
2D photonic crystal silicon membranes.  Room temperature 
PL spectra from these samples clearly demonstrate coupling 
of the exciton emission to the microcavities [9]. 
 

 
Fig. 1. Intensity of the cavity-enhanced PbSe excitonic PL measured at 

room temperature on an L3 microcavity as a function of the CW power of a 
HeNe excitation laser focussed to a 2 micron diameter. 
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Photonic Circuits 
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