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Abstract—We present a general method allowing to perform a
direct bifurcation diagram and to determine the stability of the
solutions of a Traveling wave model. We exemplify the cases of
the two level atom and the semiconductor quantum well lasers.

I. INTRODUCTION

The Maxwell-Bloch equations governing the laser dynamics
can be regarded as a singularly perturbed problem: the fast re-
laxation of the different polarization components is responsible
of the wide gain bandwidth which in turn induces a very weak
discrimination between the laser modes. These weak modal
gain differences are what ultimately govern the evolution of
the field and a completely different scenario may be expected
if these small terms are not properly accounted for.

Traveling Wave models (TWM) has proven to be a very
useful tool for the study of problems involving broadband
multimode dynamics, as for instance the directional switching
in ring lasers induced by short pulses injection [1] or the
Mode-Locking of Fabry-Pérot lasers with intracavity saturable
absorbers [2]. Although not trivial a problem, the direct time
integration of TWMs is now well understood. It is however a
limited tool if one wants to reconstruct a bifurcation diagram.

It is possible to circumvent the direct study of the Maxwell-
Bloch equations via a spatially resolved TWM by invoking
the Uniform Field Limit (UFL), where one assume small gain
and losses and an almost conservative cavity. In this case, a
modal decomposition can be sought resulting in a low number
of coupled ordinary differential equations (ODE)s that can be
studied, via standard bifurcation methods. Not surprisingly,
only a handful of results are known out of the UFL. In
addition, since the UFL is robust a limit, one may be tempted
to extend results out of their domain of validity. There are
cases where this approach is incorrect; a prominent example
is the disappearance of the Risken-Nummedal-Graham-Haken
instability when the mirror losses are increased [5]. This
qualitative change renders difficult to infer the real domain
of validity of the UFL. It is important to notice that the UFL
usually does not apply to semiconductor lasers.

Software packages like AUTO [3] or DDEbifTool [4] al-
low to perform a numerical bifurcation analysis of systems
composed of a moderate number of coupled ODEs or delayed
differential equations (DDE)s. By mapping the various steady
and oscillating regimes encountered when one –or several–
control parameters are varied and by determining their linear
stability analysis (LSA) one can elaborate a global dynamical

scenario. This approach is the most efficient one to assess
the performance of a device. For instance, in control theory
being able to calculate the rightmost, stability determining
roots of the LSA problem gives a much better prediction of
the asymptotic stability than what could be obtained by direct
numerical time integration. The LSA does not suffer from the
critical slowing down phenomenon near a bifurcation.

Although there are no equivalent softwares adapted to the
bifurcation analysis of partial differential equations (PDE)s,
a relatively coarse discretization of the variables allows to
approximate the spatial operators via finite differences. In this
way, one can recast an PDE into a large ensemble of sparsely
coupled ODEs. This transformation usually induces numerical
dissipation which may not pose a problem if the underlying
dynamical system is already dissipative. As such, this method
is adapted to the study of shallow wave solutions of parabolic
PDEs, like e.g. the so-called Brusselator model. However,
this approach completely fails to describe the evolution of an
almost conservative hyperbolic PDE.

In this paper we present numerical methods – independent
of the boundary conditions, of the parameters values and
whether or not the UFL applies – that allows for a direct
bifurcation analysis of a spatially resolved TWM.

II. RESULTS

Our model, in the case of a homogeneously broadened lasers
(see [6] and reference therein) reads

(∂τ ± ∂s)A± = B± − αA±, (1)
γ−1∂τB± = − (1 + iδ)B± +D0A± +D±2A∓,(2)
ε−1∂τD0 = J −D0 − 2<

(
A+B

∗
+ +A−B

∗
−
)
, (3)

η−1∂τD±2 = −D±2 − εη−1
(
A±B

∗
∓ +A∗

∓B±
)
, (4)

where A± are the scaled slowly varying amplitudes of the
counter-propagating electric fields, B± are their respective
polarizations, D0 is the quasi-homogeneous inversion density
and D±2 are the spatially-dependent contributions to the
grating in the population inversion density that arise from
standing wave effects and lead to saturation of the gain. Space
and time (s, τ) are scaled by the length and the time of flight
of the cavity, respectively. α are the internal losses per pass,
γ determines the spectral width of the gain spectrum, δ is
the detuning between the atomic resonance and the nearest
cavity mode, and ε and η are the decay times for D0 and D±2

respectively, which differ due to the impact of diffusion on
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the decay of the grating terms. We treat on equal grounds ring
and Fabry-Pérot cavities by supplying for general boundary
conditions that reads

A+ (0, τ) = t+A+ (1, τ) + r−A− (0, τ) , (5)
A− (1, τ) = t−A− (0, τ) + r+A+ (1, τ) . (6)

We determine the monochromatic solutions of (1-4) for a
given cavity configuration via a low dimensional shooting
method. With an initial guess for the modal frequency and
amplitudes A±(0), we solve for the spatial dependence of
(1)-(4) towards the other end of the cavity, where the propa-
gated values A±(1) must verify the boundary conditions. A
Newton-Raphson algorithm provides a new guess for the field
amplitudes A±(0) and the modal frequency and the process is
repeated until one reaches convergence. The final trajectory
generated by this shooting method provides a discretized
representation over a mesh of N samples of the modal profile.
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Fig. 1. (a) Numerical bifurcation diagram for mode m = 2 for a ring laser,
γ = 250, α = 2.03, ε = 0.05, η = 10, g = 4, t± = 0.98 and r± = 0.01.
Eigenvalue spectra for J = 3 (b) and J = 4 (c).

Once the monochromatic solutions are determined, one
could in principle compute the eigenvalues from (1)-(4),
linearized around the newly found solution. However, the
resulting system is still a hyperbolic PDE, and a discrete
representation of the solution would require to express the
gradient operator using finite differences. This approach is
not practical: time propagation of hyperbolic PDEs cannot be
made reliably for an arbitrary choice of the spatial and of the
temporal discretization, leading to large errors in the eigen-
values. Instead, we use the temporal map Vn+1 = U(h,Vn)
described in [6] that advances the state vector V a time
step h = 1/N while verifying the Courant condition and
canceling numerical dissipation. We then consider all possible
perturbations of V hereby finding the matrix M = ∂U/∂V
representing the linear operator governing the time evolution
for the perturbations around one mode. We finally compute
the 11×N Floquet multipliers zi of M by a standard QR de-
composition and determine the eigenvalues as λi = h−1 ln zi.

The results of this procedure are shown in Fig. 1 for one
of the side mode of a symmetric, bidirectional ring laser
with a point coupler. This is a pathologic case since both
t± and r± are different from zero. However, it represents
accurately semiconductor ring laser [7]. Solid (dashed) lines
represent the stable (unstable) solutions. In panel a) we show
that just above the threshold current J ' 0.51, the solution
corresponds to an unstable bidirectional state. At J ' 1, a

pitchfork bifurcation into unidirectional emission occurs, but
the degenerate (almost) unidirectional states are also unstable,
as evidenced by the eigenvalues shown in panel b) for J = 2.
However, for currents above J > 2.3, they become stable and
all the eigenvalues have <(λ) < 0 (see panel c) for J = 3).
Our method allowed us to discuss the impact of the cavity
configuration on the possible longitudinal mode multistability
in ring lasers [8] and its use in all optical signal processing.

To conclude, while the model presented in eqs. (1)-(4) is
adapted to the case of solid state and CO2 lasers, it must be
modified to describe the optical response of semiconductor
Quantum-Well (QW). We do so by using the method re-
cently presented in [9] where we evaluate the time-domain
susceptibility of the QW by an integral kernel. By using a
similar methodology, one may obtain an equivalent bifurcation
diagram. For instance, we represented in Fig. 2 the eigenvalue
spectrum of the off solution of a Fabry-Pérot QW laser with
cleaved facets. One can clearly recognize the blue shifted,
asymmetrical shape of gain and the presence of the band-edge.
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Fig. 2. Eigenvalue spectrum of the off solution of a Fabry-Pérot QW Laser.
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