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Abstract—A simple model is used to simulate the dynamic
properties of coupled nonlinear microcavities. The model has
been checked using a nonlinear finite difference time domain
code. We show that two coupled nonlinear cavities with a Kerr
nonlinearity can have multistable or self pulsing behaviors.
Finally, an application as a positive pulse all-optical memory
is proposed.

I. INTRODUCTION

The integration of all-optical signal processing required the
miniaturization of active [1] or passive [2], [3] nonlinear pho-
tonic devices. Microcavities including microdisks, microrings
or photonic crystal nanocavities are of great interest to reach
this goal. Passive nonlinear devices based on the optical Kerr
effect are intrinsically fast and have low losses [4]. Conse-
quently they could be of great interest for high bit rate optical
applications. The coupling of such nonlinear microcavities
improves the device performances with respect to single cavity
approaches. For example, the bandwidth of fully integrated all-
optical reshapers [5] or the efficiency of frequency converters
[6] can be increased. In this paper we first review the methods
to simulate the response of a nonlinear Kerr microcavity
including comparison between coupled mode theory (CMT)
and nonlinear finite difference time domain (FDTD) [7]. We
then apply the CMT to the case of coupled nonlinear cavities
and carry out their linear stability analysis. We show that these
systems can have a true multistable behavior which can be
used in all-optical switching applications.

II. NONLINEAR CAVITY MODEL

We first study a simple system consisting of a single
microcavity made of a third order 𝜒(3) nonlinear material
whose the nonlinear refractive index is denoted 𝑛2 and the
optical losses are characterized by 𝜏0 (Fig. 1). The microcavity
is coupled to two bus waveguides with two characteristic
coupling times 𝜏𝑒1 and 𝜏𝑒2. The time domain variations of
the slowly varying cavity mode amplitude 𝑎(𝑡) is obtained
integrating:
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Fig. 1. Single microcaviy coupled to two bus straight waveguides. The cavity
is made of a material with a third order susceptibility 𝜒(3). The output powers
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deduced from a comparison with full numerical calculations
such as the FDTD method [8], [9]. Figure 2 gives the fitting
of two-dimensional FDTD calculations by the CMT model
for the nonlinear bistable microring described in ref. [7]. The
calculations have been carried out in the stationary regime at
an angular frequency 𝜔 with a detuning Ω = 𝜔−𝜔0 = 2.6/𝜏 .

Fig. 2. Full numerical FDTD calculations of the output drop (triangles) and
transmitted (circles) optical intensities for a nonlinear microring. We also give
the associated CMT fitting curves. Note that here we used two values 𝜏 𝑖𝑛𝑒1
and 𝜏𝑜𝑢𝑡𝑒1 for 𝜏𝑒1 to consider the asymmetry and the losses of the coupler.

III. TIME DOMAIN ANALYSIS OF COUPLED CAVITIES

Even though, full numerical calculations are strictly required
for the precise design of a device based on a nonlinear
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microcavity, the CMT approach can help to understand the
physical properties of more complex devices such as coupled
nonlinear cavities. Figure 3 represents a lossless two coupled
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Fig. 3. Two coupled nonlinear microcavities. The two cavity modes are 𝑎1
and 𝑎2. The coupling rate between the two cavities is 1/(2𝛾).

nonlinear cavity device, 1/(2𝛾) is the coupling rate between
the two cavity modes 𝑎1 and 𝑎2. The coupled mode evolution
equations derived from the CMT read:
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The analysis of the Jacobian of this set of equations gives the
dynamical behavior of the coupled nonlinear cavity system
described in Fig. 3 [9].

A. Stability analysis

Figure 4, shows the classification of the solutions of system
(2) for a coupling rate 𝛾 = 𝜏/9. For sufficiently large values

Fig. 4. Classification of the mode amplitude solutions for a two coupled
lossless cavity system in the case of 𝛾 = 𝜏/9.

of detuning, Ω and input power, the coupled cavity system can
have a multistable [10] or a self-pulsing behavior [9].

B. Application

We propose here an all-optical switching process relying
on the multistability of the two coupled cavity device. The
interest of this process in comparison with others based on
single cavity approaches is that it requires only positive optical
pulse. First a set pulse switches the system from a low to a

Fig. 5. All optical memory operation of the two cavity device for Ω =
11.6/𝜏 . a) Input power b) Output drop transmission 𝐷 = 𝑃𝐷/𝑃𝑖𝑛.

high transmission state as shown in Fig. 5. Then a second pulse
(reset pulse) switches back the system in the low transmission
state via a third stable state.

IV. CONCLUSION

Combined to full numerical calculations, the coupled mode
theory is a simple tool allowing the dynamical response of
coupled nonlinear cavities to be evaluated. We apply this
model to show that coupled nonlinear cavities can operate as
an all-optical memory switchable with positive pulses.
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