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Abstract—We consider propagation of ultrashort optical pulses
in nonlinear fibers and suggest a new theoretical framework
for description of pulse dynamics and exact characterization of
solitary solutions. Our approach deals with a proper complex
generalization of the nonlinear Maxwell equations and completely
avoids the use of the slowly varying envelope approximation.
The only essential restriction is that fiber dispersion does not
favor both the so-called Cherenkov radiation, as well as the
resonant generation of the third harmonics, as these effects
destroy ultrashort solitons. Assuming that it is not the case,
we derive a continuous family of solitary solutions connecting
fundamental solitons to nearly single-cycle ultrashort ones for
arbitrary anomalous dispersion and cubic nonlinearity.

To find a real-valued solution of, e.g., a linear wave equa-
tion, one often looks for a complex-valued solution first. This
useful technique can be generalized to nonlinear models. For
instance, consider a complex-valued solution E(z, t) of the
equation
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= 0, (1)

where a nonlocal operator ε̂ represents arbitrary dispersion,
(ε̂E)ω = ε(ω)Eω , and for simplicity we additionally assume
that Im[ε(ω)] ≈ 0 and χ(3) ≈ const for the frequency range
of interest. One can directly check that E(z, t) yields a real-
valued solution E(z, t) = Re[E(z, t)] of the standard nonlinear
wave equation

∂2zE −
1

c2
∂2t (ε̂E + χ(3)E3) = 0, (2)

e.g., for a single-mode nonlinear fiber with the effective (i.e.,
including both bulk medium dispersion and geometry effects)
dispersion function ε(ω).

Notably, the complex field in Eq. (1) is introduced without
the use of the slowly varying envelope approximation (SVEA).
The complex Eq. (1) may be considered as an unusual way
to solve the real Eq. (2). The main advantage of the approach
is that Eq. (1) explicitly distinguishes between two different
4-wave mixing processes: self-phase modulation (SPM) and
third harmonics generation (THG). Moreover, for a favorable
dispersion function one can neglect THG by omitting the E3
term in Eq. (1). It is then convenient to relate E(z, t) to the
analytic signal for the electric field by taking a suitable initial
condition. By construction we set

E(z, t)|z=0 = 2
∑
ω>0

e−iωtEω(z)|z=0 (3)

Fig. 1. An exemplary solution of Eq. (1) without E3 term (black lines)
compared to the full solution of the wave equation (2) (gray lines). An initially
sech-shaped ultrashort pulse is shown at z = 3000µm, for further details see
[1]. (a) good coincidence in the time domain; (b) good coincidence for positive
frequencies in the spectral domain. The negative-frequency part of E(z, t)
remains small indicating that the complex field is a very close approximation
to the analytic signal for E(z, t).

such that Eω(z)|z=0 vanishes for ω < 0. The summation
in Eq. (3) is performed over all discrete positive frequencies
corresponding to a large period of the pulse sequence in the
time domain.

One can demonstrate that in the absence of the resonant
THG the negative-frequency part of E(z, t) remains small
in the course of pulse propagation [1]. Therefore to a good
approximation E(z, t) is determined exclusively by SPM and
represents the analytic signal (“fast envelope”) for the real-
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Fig. 2. (a) A single-cycle soliton at λ = 2.5µm calculated for bulk fused
silica dispersion (for further details see [1]) is shown by the black curve. For
comparison, the corresponding fundamental NLSE soliton solution is shown
by the grey curve. (b) Spectral densities of the same solutions, the difference
is now clearly observable.

valued electric field. This is illustrated in Fig. 1 showing for
z = 3000µm an initially 14 fs (FWHM) sech-shaped pulse at
λ = 1.6µm propagating along bulk fused silica. The initial
pulse amplitude is twice that of the fundamental soliton, the
initial peak power ≈ 2× 1012 W/cm2.

Equation (1) can be considered as a kind of “bidirectional
nonlinear Schrödinger equation” (bidirectional NLSE) which
is free of SVEA. We used Eq. (1) to study ultrashort optical
solitons in a focusing nonlinear media with cubic nonlinearity
and an arbitrary anomalous ε(ω) (see [1]). The well known
fundamental soliton solutions are described by the standard
NLSE which is derived under SVEA [2]–[4]. These solitons
are organized in a continuous family of solutions [5]; they are
parametrized, among other things, by the pulse duration. As
the pulse duration decreases, the soliton is transformed into a
few-cycle pulse such that both the SVEA and the polynomial
representation of the dispersion function become invalid [6],
[7]. At this point our Eq. (1) comes into play.

The solitary solutions were found using the spectral renor-
malisation method originally developed for the envelope soli-
tons [8]. To this end we first substitute a standard soliton
ansatz into Eq. (1). The resulting equation is reformulated in
an iterative manner E = N̂ [E ] where N̂ is a suitable nonlinear

operator. The iterations start with the fundamental soliton and
are performed in two steps

En → En+1/2 = N̂ [En] → En+1 = snEn+1/2,

where the rescaling factor sn in the second step is chosen in
such a way that

〈En+1|En+1〉 = 〈En|En〉,

for a suitably defined scalar product, e.g., keeping the photon
number constant. The successive iterations En are then forced
to belong to a kind of ”unit sphere”, this greatly improves (but
not ensures!) convergence of the method.

An exemplary solution for the bulk fused silica dispersion
and carrier frequency at λ = 2.5µm is shown in Fig. 2.
The difference between the exact soliton and the simplest
fundamental one is well pronounced when plotted in the
frequency domain. In conclusion our approach allows to trace
solitons up to a nearly single-cycle duration. Too short solitons
are finally destroyed either by Cherenkov radiation [9], [10],
or by cusp formation [11], [12].
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