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Abstract—In this talk, we will show some of the limitations
of the finite difference technique when applied to k.p modeling
of type II MQW structures. Improvements to the commercial
APSYS software were made to overcome these limitations and
provide sturdy rejection of spurious QW solutions. Dispersion
relations and dipole moments for a sample GaAsSb/InGaAs
structure will also be discussed.

I. INTRODUCTION

The use of artificial periodicity to affect material properties
has long been known and has many applications in semi-
conductor technology such as Bragg mirrors and photonic
crystals. Likewise, multi-quantum well superlattices (SL) of-
fer many opportunities for bandgap engineering by offering
control over the position of the confined energy levels. In
particular, superlattices with type II band alignment may be
used to create materials with very small transition bandgaps
and have therefore attracted a great deal of interest for use in
mid and long-wavelength infrared detectors[1].

One particular material system which has been considered
for this application is InAs/GaSb due its “broken-gap” (type
IIb) configuration. However, it is known that material inter-
faces without a shared common atom may create an overall
superlattice structure without the full zincblende symmetry[2].
The inclusion of this crucial interface effect requires the use
of full-band 𝑘 ⋅ 𝑝 models (at least 6x6 or 8x8).

Previous work on the subject has relied on detailed tight-
binding methods and Fourier expansion analysis or used
an extension of Pikus-Bir 𝑘 ⋅ 𝑝 Hamiltonian with a plane
wave expansion and periodic boundary conditions[2]. Such a
periodicity assumption matches the composition but it does
have its limitations: for example, if a superlattice is used in
a real device, it may be subject to an applied field and the
confining potential’s periodicity will be affected. It is for this
reason that we have chosen to use a finite difference method
to approach the problem.

In this talk, we report on improvements made to the 𝑘 ⋅ 𝑝
solver in the commercial APSYS software developed here at
Crosslight. We show that in type II structures, the spurious
solutions induced by the finite difference model presents a far
more serious challenge than for type I quantum wells (QW)
but that these may be overcome by new eigenvalue picking
algorithms. For the purposes of this talk, we limit ourselves
to a simple Ga0.51As0.49Sb/InGaAs W-type MQW region[3]
lattice-matched to InP. This will serve a first step towards a full
model of a InAs/GaSb SL with non-common atom interface
effects (IF).
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Fig. 1. Type II band profile and 1-band wavefunctions.

II. IMPLEMENTATION

We solve the Pikus-Bir Hamiltonian following the work of
S.L. Chuang[4] and others with a potential discretized over a
1D finite difference mesh. The 𝑘 ⋅ 𝑝 solution is obtained using
a sparse matrix restarted Arnoldi method[5]; an initial 1-band
solution based on an iterative eigensolver is used to provide an
estimate of the number of roots. We have chosen in this talk to
work with an 8x8 solver and neglect the block-diagonalization
simplifications of Chuang since these are not compatible with
the IF correction terms.

Unlike periodic boundary conditions which assume that the
wave extends unchanged to ±∞, the finite difference method
enforces that the wave decays to zero at some finite point
outside the confinement region; that is, the QW region being
studied is always encased in a larger infinite potential well.
When the finite difference method is used for SLs, the periodic
solutions being sought may be approximated by solving for a
sufficiently large subset of the SL.

For type I QWs, the infinite well approximation is often
reasonable provided the boundary is sufficiently far away from
the region of interest: there is little perturbation of the confined
levels and any spurious levels from the larger infinite well are
located above the barriers so they may be easily dismissed.
For type II structures however, the electron barrier is the hole
well (and vice versa) so that it is unavoidable that the infinite
potential wall will serve to confine levels using the same well
bottom as the QW region of interest. Therefore, the spurious
solutions will have energies comparable to those of the “good”
solutions we seek as can be seen in Fig.1.

While it is rather straightforward to eliminate these spurious
solutions from the 1-band model, it is considerably less so for
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the full 𝑘 ⋅𝑝 model. First, many of the spurious solutions have
a lower energy than the first “good” confined level: the more
we seek to distance the infinite potential wall from the QW
region, the less confined the spurious solutions in the outer
barriers become. A simple sort on the eigenvalue is therefore
insufficient.

Second, automated rejection algorithms based on the po-
sition of the peaks or any other ab-initio aspect of the
wavefunction’s shape cannot reliably handle the distortions
that occur when computing the dispersion relation at 𝑘𝑡 > 0:
with more kinetic energy, carriers have a higher probability
of being outside their confinement region and even a “good”
level may become rejected unjustly.

But the most important insight that must be gleaned from
the existence of these spurious solutions is simply this: even
though those states have no physical meaning, they are still
valid numerical solutions to the sparse matrix eigensolver and
must be included in the initial estimate of the number of roots.
If they are rejected out of hand in the initial iterative search,
then the full solver may miss the correct eigenvalues and a
full k.p solution becomes impossible.

III. NEW ALGORITHM AND RESULTS

We have therefore implemented the following algorithm to
pick the correct wavefunctions in the full 𝑘 ⋅ 𝑝 solver. First,
the iterative eigensolver picks all the solutions in the expected
confined energy range for 𝑘𝑡 = 0 to get the number of search
roots (𝑛1). A rejection algorithm based on the position of the
wavefunction peak is then used to automatically select a few
“good” roots amongst them (𝑛2 < 𝑛1). In the example of
Fig.1, we pick only and the HH1 and HH2 levels and a LH1
level which is not shown in the figure.

We then calculate the overlap

∣< Ψ1∣Ψ2 >∣2

for every Ψ1 wavefunction obtained from the sparse eigen-
solver and every Ψ2 initialized from the 1-band solver. In this
way, we pick not the eigenvalue with the lowest energy but the
one which best matches the expected shape. For example, if
the 1-band model predicts the existence of an HH1 state, then
we pick the eigenvalue which has the highest overlap along
the

∣

∣

3
2 ,± 3

2 > bases.
For larger 𝑘𝑡 values, the solution from the previous step is

used to initialize Ψ2 but the procedure is otherwise the same.
In this way, the deformation of the wavefunction and increased
band coupling is taken into account and we are assured to
always pick the eigenstate which most closely resembles a
previously known “good” solution.

Sample results of the algorithm are shown in Figures 2-
3. Features of interest include the negative curvature of one
of the conduction bands due to the strong coupling between
the conduction and valence bands: even at 𝑘𝑡 = 0, the
∣< Ψ∣𝑖𝑆 >∣2 overlap is approximately 50%. We also note the
low dipole moment due to the physical separation between the
electron and hole states.
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Fig. 2. 8x8 k.p dispersion plot.
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Fig. 3. Transistion dipole moments normalized to bulk dipole moment.

IV. CONCLUSION

In this talk, we have shown some of the limitations of the
finite difference technique when applied to 𝑘 ⋅ 𝑝 modeling
of type II MQW structures. Improvements to the commercial
APSYS software were made to overcome these limitations and
provide sturdy rejection of spurious QW solutions. Further
research on the topic will focus on extending the model
to include the effects of non-common atom interfaces in
structures such as InAs/GaSb superlattices.
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