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Abstract—A possibility to control an optical soliton by a much
weaker second pulse that is scattered on the soliton attracted
considerable attention recently. An important problem here is to
quantify the small range of parameters at which the interaction
takes place. This has been achived by using adiabatic ODEs for
the soliton characteristics, which is much faster than a scan of
the full propagation equations for all parameters in question.

I. INTRODUCTION

We consider scattering of a low-intensity dispersive wave
(DW) on an optical soliton mediated by cross-phase modu-
lation in a nonlinear fiber. If the group velocity (GV) of the
DW is close enough to the GV of the soliton then the DW
is efficiently reflected and experiences frequency conversion
[1], [2]. The soliton in turn acquires a permanent shift in
frequency and time delay, moreover, it may experience an
all-optical switching to a new state with a considerable gain
(loss) in peak power [3]. The phenomenon has been observed
in experiments, [4]–[6], and appears in many nonlinear wave
systems [7].

Reflection of the DW can only be seen in a very small range
of parameters. Since direct numerical simulations of soliton
evolution are time consuming, the predicition of adequate ini-
tial parameter ranges is particularly useful. We shall quantify
the DW reflection and find the parameter ranges in which the
changes in soliton characteristics are most pronounced.

A suitable DW, even two orders of magnitude weaker
than the soliton, can compress the latter to a single-cycle
duration. The adequate DW parameters have been derived
by using two simple coupled nonlinear Schrödinger equations
(NLSE) of Manakov type. Our solution resides in results from
soliton perturbation theory combined with quantum mechan-
ical scattering theory for the DW. The predictions are tested
against numerical solutions of the full generalized nonlinear
Schrödinger equation (GNLSE).

II. AN EXEMPLARY NUMERICAL SIMULATION

Fig. 1(a) shows a typical GNLSE simulation in space-
time domain. The monochromatic DW (A) approaches the
initially stationary soliton (B) and, being reflected, yields
an interference picture (C). The soliton is compressed and
deflected (D). The reflected part of the DW is frequency
shifted, as clearly seen in the frequency domain [Fig. 1(c)].
Like the DW, the soliton is frequency shifted during reflection
[Fig. 1(b)].
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Fig. 1. An exemplary reflection of a DW from a soliton. (a) Normalized
power in space-time representation. The DW is less intense than the soliton.
The chosen frame of reference co-propagates with the unperturbed soliton.
Normalized power in frequency domain for soliton (b) and DW (c).

Fig. 2(a,b) shows the group delay β′(ω), the group velocity
dispersion β′′(ω) (GVD), and indicates frequency shifts for
the simulation shown in Fig. 1. Here the dispersion relation is
encoded by k = β(ω). The carrier frequencies of soliton and
DW (ωa and ωb + Ω respectively) belong to opposite sides of
the zero dispersion frequency at which β′′(ω) vanishes, and
are chosen such that β′(ωa) = β′(ωb). Note that β′′(ωa) < 0
and β′′(ωb) > 0. Ω denotes the small initial DW frequency
offset from ωb.

III. MODEL

As can be seen in Fig. 1, the spectra of soliton and DW
are neatly separated and remain so even after scattering. This
observation suggests to describe the total electric field with
two envelopes

E(z, t) = Re
[
ψa(z, τ)ei(βaz−ωat) + ψb(z, τ)ei(βbz−ωbt)

]
where βa,b = β (ωa,b) and τ = t − β′az is introduced as the
common retarded time. The complex envelopes ψa (for the
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Fig. 2. A typical profile of (a) the group delay β′(ω) and (b) GVD β′′(ω)
that leads to the collision phenomenon shown in Fig. 1. Collision can only
be realized for initial DW frequency offsets in a small interval (shaded grey)
around the reference frequency of matching group velocity.

soliton) and ψb (for the DW) are governed by two coupled
NLSEs

i∂zψa −
β′′a
2
∂2τψa +

n2a
c
ωa

(
|ψa|2 + 2 |ψb|2

)
ψa = 0, (1a)

i∂zψb −
β′′b
2
∂2τψb +

n2b
c
ωb

(
|ψb|2 + 2 |ψa|2

)
ψb = 0. (1b)

We reformulated this system in the following three steps which
were suggested by observations in numerical simulations.

Firstly, the full solution of (1a) is approximated by a soliton
the parameters of which are z-dependent, i.e.,

ψa (z, τ) =
1

σa

√
|β′′a |c
n2aωa

exp [−iνa (τ − τa) + iθa]

cosh [(τ − τa)/σa]
(2)

with duration σa = σa(z), frequency offset νa = νa(z), delay
τa = τa(z), and phase θa = θa(z). In the absence of the DW

dσa
dz

=
dνa
dz

= 0,
dτa
dz

= β′′aνa,
dθa
dz

= −β′′a
ν2a + σ−2a

2
.

The latter equations have to be modified to account for
interaction of the soliton with the DW.

Secondly, we insert |ψa|2 from (2) in (1b). The latter is
additionally linearized with respect to ψb, as the DW has much
lower intensity compared to the soliton. Now (1b) describes
the scattering problem of a plane wave at a squared hyperbolic
secant barrier. It can be solved analytically for a static soliton
barrier with the vanishing τa(z). To account for the soliton
motion, a suitable Galilei transformation is applied to the
standard scattering solution. The derived |ψb|2 is inserted in
(1a).

Thirdly, we revisit (1a) in which soliton perturbation theory
[8] results in final evolution equations for the soliton parame-
ters. Most importantly, we derive the following expression for
the evolution of the solitons frequency

dνa
dz

=
4µT

σaLa

∫ 1

0

|F (a, b, c, ζ)|2 (2ζ − 1) dζ, (3)
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Fig. 3. Initial effect on the soliton as predicted by perturbation theory (a), and
soliton deflection at propagation distance of 1m from full numerical simulation
(b).

where σa(z) = σa(0), the dispersion length La = σ2
a/|β′′a |

and µ is the DW power normalized by that of the soliton.
Parameters that enter into the hypergeometric function F are

a, b =
1

2
− iε± is, c = 1− iε, s =

√
4
|β′′a |
β′′b

ωb
ωa

n2b
n2a
− 1

4
,

ε =

(
Ω− β′′a

β′′b
νa

)
σa, T =

sinh2(πε)

cosh2(πs) + sinh2(πε)
.

IV. RESULTS

Equation (3) provides a simple and effective tool to estimate
parameter ranges for initial parameters. We evaluated dνa/dz
at z = 0 and for varying Ω, as depicted in Fig. 3(a) for a
soliton with ωa = 1.25PHz and duration σa = 55fs. The
curve shows the interval of interaction. At its maximum we
expect to find the strongest initial effect on the soliton. Results
are qualitatively valid for simulations with full GNLSE. For
comparison, Fig. 3(b) shows τa at z = 1m. At the predicted
optimal Ω ≈ 0.05PHz the absolute soliton deflection becomes
maximal.
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