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Abstract—An efficient wide-angle beam propagation method 

based on Denman–Beavers iterative scheme for tilted optical 
waveguides is proposed, where the beam is shifting along the 
propagation.  By shifting the beam opposite to the variation of the 
waveguide geometry in every step, the propagation in a 
longitudinally varying waveguide is realized through an 
equivalent straight waveguide. Significant improvement in 
efficiency with almost no influence on the accuracy is achieved. 

I. INTRODUCTION 

The finite-difference beam propagation method (FD-BPM) 
is now one of the most widely used numerical techniques for 
modeling optical and photonics devices, mostly owing to its 
calculational speed and numerical simplicity [1]-[3]. These 
attractive properties result chiefly from the use of the paraxial 
approximation. However, for longitudinally varying 
waveguides, the wide-angle BPM (WA-BPM) often needs a 
large size of simulation window for ensuring the desired 
accuracy [4], [5], which may lower the efficiency of the 
algorithm. Moreover, the variation of the longitudinal 
refractive index profiles usually results in plenty of evanescent 
waves to be dealt with and a number of transverse 
characteristic matrixes to be calculated, which also decreases 
stability and efficiency of the WA-BPM. The recently 
developed WA-BPM based on the Denman–Beavers iterative 
(DBI) scheme [5], has the advantages of excellent convergence, 
and high accuracy and stability, superior to the classical 
WA-BPM, but less efficient at most cases. Here, we present a 
shifting-beam scheme for the DBI based WA-BPM for 
efficiently analyzing tilted optical waveguides. The proposed 
scheme can greatly improve the efficiency of the WA-BPM 
with almost no influence on the accuracy. 

II. CALCULATION MODELS AND PROCEDURE 

A governing equation for WA-BPM is expressed as [4], [5] 
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where ݇ = ݇଴݊୰ୣ୤  with ݇଴  being the wavenumber in vacuum 
and ݊୰ୣ୤  being the reference refractive index, and P is the 
transverse characteristic matrix [1]-[5], and I is the identity 
matrix with the same size as P. Then, by applying the DBI 
scheme [5], [6] to (2) along with the stable and robust 
Crank–Nicholson scheme, a WA-BPM is constructed. 

The variation of the longitudinal refractive index profiles 
results in a number of transverse characteristic matrix (P, as 
defined in eq. (1)) to be calculated, which greatly increases the 
computational load of the WA-BPM. Moreover, for 
higher-order approximation, we may need to perform more 
matrix inversions corresponding to each P [5], which further 
decreases the efficiency. To alleviate this issue for those 
waveguides with unchanging geometry in cross-section, we 
first simplify the tilted waveguide structures into an equivalent 
straight waveguide (ESW) as shown in Fig. 1, and such 
transformation can be readily extended to three dimensional 
(3-D) cases. Then, by numerically shifting the input beam 
opposite to the variation of the waveguide geometry in every 
step, the propagation in a longitudinally varying waveguide can 
be realized through an ESW. This can be performed by 
generating cells with zero field values at the specific edge(s) of 
the input beam and dropping the same number of cells at the 
opposite edge(s). After the propagation is finished, we can 
obtain the results by rearranging the output field pattern.  

The main advantage of the present method comes from that 
we only need to calculate the transverse characteristic matrix 
for a single ESW, while classical WA-BPM should recalculate 
the transverse characteristic matrix every few steps since the 
refractive index profile is changed. Consequently, 
the computational time and necessary memory are greatly 
reduced. Moreover, the size of the simulation window may also 
influence the computational efficiency. Generally, a smaller 
simulation window is preferred if the accuracy and stability can 
be guaranteed. Fortunately, the shifting-beam scheme makes it 
possible for us to perform the calculation using a small 
simulation (blue line dashed as shown in Fig. 1) since main part 
of the guided field power is concentrated in the core.  

III. NUMERICAL RESULTS AND DISCUSSION 

Now, we first assess the ability of DBI based WA-BPM to 
accurately deal with the evanescent waves correctly as 
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 Fig. 1.  Transformation schematic for the tilted waveguides. 
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mentioned above. For simplicity, we consider a single 
plane-wave component propagating in a homogeneous 
medium as is previously used in [5], [6]. Fig. 2 shows the 
normalized power with respect to the characteristic value A at 
the step size ᇞ ݖ = 0.1μm. It is noted that DBI-n (n=1, 2,…) 
and	ߙ respectively corresponding to the number of iteration and 
the rotation angle in [5]. As is seen, the real BPM incorrectly 
treats the evanescent waves as the guided waves, while the DBI 
with ߙ = 45°  presents the evanescent waves properly decay 
toward to the exact solution with the iteration number increases. 
Therefore, the proposed propagator can attenuate unstable 
evanescent waves generated at the longitudinal discontinuities, 
not appreciably affecting guided modes as expected. 

Then, we validate the accuracy and utility of the present 
shifting-beam scheme by applying it to a typical tilted 
directional coupler as shown in the inset of Fig. 3(a).  The 
waveguide has a tilt angle of 10° and the width of the core is ݓ	0.5= μm. The refractive index of the cladding is n1 = 1.5 and 
that of the core (n2) is the sum of n1 and the index difference 
(ID). The operation wavelength is set to be 1.55 μm and the 
WA-BPM based on DBI-2 operator is utilized in the following 
analysis. Fig. 3(a) shows the coupling length (CL) in term of 
the ID and the gap width (GW). As is seen, results from the 
shifting-beam scheme agree well with those from the classical 
no shifting-beam scheme. Fig. 3(b) illustrates the electric field 
distribution of the fundamental TE mode propagating in the 
tilted directional coupler computed using the shifting-beam 
scheme at ID = 1.5 and GW = 0.2 μm. Similar field distribution 
is also obtained by the classical WA-BPM without using the 
shifting-beam scheme [4]. It is noted here that a very small 
simulation window (3.43 μm) is used for the simulation while a 
12.36 μm simulation window is needed using the classical 

WA-BPM, and the difference will be larger as the length of the 
waveguide increases. Moreover, the present method can also be 
directly applied to the S-bend waveguide, and can partially 
applied to waveguides which contain such kinds of 
components, for instance, the Y-branch waveguide. 

Finally, to further illustrate the advantage of the proposed 
method, we plot the computational time with respect to the grid 
size for an 80 μm simulation window in Fig. 4.  Comparison 
has also been made between the shifting and the no shifting 
scheme. Obviously, the WA-BPM based on shifting-beam 
scheme takes less computational time than the classical 
WA-BPM even the same size of simulation window is used,  
and the difference is more evident for smaller grid size.  
This advantage may be very useful for the analysis of 3-D 
waveguides since the size of the characteristic matrix is N2

 (N is 
grid number in one dimension) times larger, especially for 
full-vectorial Analysis (4N2 times larger). 

IV. CONCLUSION 

Using a shifting-beam scheme, an efficient finite-difference 
WA-BPM based on the DBI scheme for tilted optical 
waveguides is developed. Numerical results show that the 
present approach can improve the efficiency of the classical 
WA-BPM with almost no influence on the accuracy. This 
advantage may be very useful for efficient analysis of 3-D 
waveguides. 

ACKNOWLEDGMENT 

This work was supported by National Natural Science 
Foundation of China (NSFC) under Grants 60978005 and 
11574046, and Natural Science Foundation of Jiangsu Province 
under Grant BK20141120. 

REFERENCES 
[1] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical 

techniques for modeling guided-wave photonic devices,” IEEE J. Sel. 
Top. Quant. Electron., vol. 6, no. 1, pp. 150-162, Feb. 2000. 

[2] D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” 
IEEE J. Quantum Electron., vol. 26, pp. 109-112, Jan. 1990. 

[3] J. Xiao and X. Sun, “A modified full-vectorial finite-difference beam 
propagation method based on H-fields for optical waveguides with 
step-index profiles,” Opt. Commun., vol. 266, pp. 505-511, Feb. 2006. 

[4] G. R. Hadley, “Wide-Angle Beam Propagation Using Pade Approximant 
Operators,” Opt. Lett., vol. 17, pp. 1426-1428, Oct. 1992. 

[5] S. Wu and J. Xiao, “A Wide-Angle Beam Propagation Method Using 
Denman-Beavers Iterative Scheme,” IEEE Photon. Technol. Lett., vol. 
27, pp. 2512-2515, Dec. 1 2015. 

[6] S. Wu and J. Xiao, “An Efficient Semivectorial Bidirectional Beam 
Propagation Method for 3-D Optical Waveguide Structures,” J. 
Lightw. Technol., vol. 34, pp. 1313-1321, 2016. 

 
 
 Fig. 4.  Computational time with respect to the grid size. 
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Fig. 2. Normalized power with respect to the characteristic value A. 
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Fig. 3. Coupling length versus the index difference and the gap width (a)

and field distribution (b) for a typical tilted directional coupler. 
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