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Abstract—We discuss a comprehensive modeling approach for
the simulation of quantum dot devices based on the coupling
of the van Roosbroeck system with a Markovian quantum
master equation. The model equations describe the flow of
electrons and holes in semiconductor devices along with a
quantum kinetic many-body approach for the quantum dot
physics. The consistency of the model equations with respect
to non-equilibrium thermodynamics is investigated. We present
numerical simulations of an electrically driven single-photon
source based on a single quantum dot.

I. INTRODUCTION

Semiconductor quantum dots (QDs) are zero-dimensional
nanostructures which provide a (tailorable) discrete spectrum
of electronic states due to confinement of charge carriers
in all spatial dimensions. Because of their tunable electro-
optical properties QDs have attracted considerable attention in
particular for applications in solid-state based opto-electronic
devices. These include for example highly efficient semicon-
ductor nanolasers with a single or a few QDs as gain medium
and quantum light sources such as single-photon emitters
and sources of entangled photon pairs. Applications comprise
quantum communication and cryptography, on-chip optical
computing and quantum information processing.

The modeling and simulation of semiconductor devices
containing low-dimensional nanostructures constitutes a con-
siderable challenge. The carriers confined to nanostructures
require a quantum mechanical description in order to properly
reflect their wave-like character due to size quantization.
The Schrödinger-Poisson system as well as non-equilibrium
Green’s functions provide a powerful formalism to describe
quantum transport in semiconductor structures, however their
application to full devices is prohibitively expensive. Since the
nanostructures typically constitute only small subregions of the
whole device, it is reasonable to use hybrid approaches which
combine quantum mechanical descriptions for the confined
carriers with (semi-)classical models for the transport of the
freely roaming carriers in the barrier material. For the latter
one may choose e.g. the van Roosbroeck system [1], which
provides a good compromise between accuracy and efficiency
and has become the standard model for semi-classical transport

simulation. An established approach is the coupling of a
transport model with (conventional) rate equations in order to
describe the carrier population dynamics within nanostructured
domains, e.g. [2], [3]. While this approach works well for
QD-layers with high sheet density and quantum wells, the
rate equation approach breaks down for systems containing
only a single or a few (electronically uncoupled) QDs, since
the underlying ensemble averages become invalid in this case
[4]. Instead, a master equation approach must be used in
order to properly describe the transitions between microstates.
We recently employed the coupling of the van Roosbroeck
system to a quantum master equation (QME) in order to
simulate electrically driven single-photon sources [5]. In this
paper, our approach is generalized to a much broader scope of
application and put on a more rigorous mathematical basis by
the investigation of its fundamental thermodynamic properties.

II. HYBRID QUANTUM-CLASSICAL MODEL

A. Model equations

We consider a hybrid quantum-classical model that self-
consistently couples semi-classical transport theory to a kinetic
equation for the quantum mechanical density matrix. The latter
one is a Markovian QME that describes the evolution of an
open quantum system which interacts with its environment.
Our approach is based on the hypothesis that charge carriers
can be separated into (free) continuum carriers and (bound)
carriers confined to QDs. The model equations read

−∇ · ε∇φ = q (p− n+ C +Q (ρ)) , (1)

∂tp+
1

q
∇ · jp = −R− Sp (ρ) , (2)

∂tn−
1

q
∇ · jn = −R− Sn (ρ) , (3)

d

dt
ρ = − i

~
[H, ρ] +D (ρ) . (4)

Eqns. (1)–(3) represent the standard van Roosbroeck system,
extended by additional terms that constitute the coupling
to the QME (4). The system consists of Poisson’s eq. (1)
for the electric potential φ and two continuity eqns. (2)–(3)
modeling drift and diffusion of electrons and holes in the
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presence of recombination. The coupling terms are formulated
as functionals of the quantum mechanical density matrix
ρ. The carrier density Q (ρ) of the quantum system enters
Poisson’s equation and the carrier capture rates Sn/p (ρ) reflect
the loss of continuum carriers that are captured to the QDs.
We will give general construction rules for the coupling terms
respecting the principle of charge conservation.

The state of the quantum system is described by the density
matrix ρ which is subject to the QME (4). It describes the evo-
lution of a many-body problem modeling the charges confined
to QDs as well as further quasi-particles comprising e.g. cavity
photons, phonons or plasmons and exciton-polaritons (dressed
states). The Hamiltonian takes the form H = H0+HI , where
H0 describes the single-particle energies of the electrons and
holes confined to the QDs (and possibly additional species).
The interaction Hamiltonian HI is assumed to commute with
the charge number operator N = ne − nh such that the
Hamiltonian part of the evolution conserves the net charge.
This rather weak restriction allows e.g. for Coulomb interac-
tion between the confined carriers (configuration interaction)
as well as light-matter interaction.

The non-Hamiltonian part of the evolution generated by
Eq. (4) is modeled by a dissipator in Lindblad form [6]

D (ρ) =
∑
α

γα
(
AαρA

†
α −

1

2

{
A†
αAα, ρ

})
,

which is a superoperator acting on the density matrix. The
dissipator accounts for dissipative interactions of the quantum
system with its environment. The operators Ak are traceless
operators on the Hilbert space of the quantum system. Here,
D (ρ) describes in particular carrier capture and escape as well
as carrier relaxation processes, spontaneous emission of pho-
tons to leaky modes and emission of resonant cavity photons.
In the hybrid model (1)–(4) the environment of the quantum
system is the spatio-temporally resolved electron-hole plasma
which itself is subject to the van Roosbroeck system (1)–
(3). The coupling is achieved by formulating the microscopic
transition rates γα = γα (n, p, ψ,∇ψ) as functionals of the
free carrier densities and the electric field. The dissipator D (ρ)
is required to satisfy the quantum detailed balance principle
with respect to the thermal equilibrium state [7].

B. Thermodynamics

We investigate the system (1)–(4) with respect to its con-
sistency with non-equilibrium thermodynamics. Moreover we
give an explicit construction of the equilibrium solution by
minimizing the grand canonical potential of the combined
quantum-classical system. Finally, explicit conditions for the
conservation of the total charge are derived and the entropy
production rate of the coupled system is analyzed.

III. NUMERCIAL SIMULATION

We apply the model (1)–(4) for the simulation of an electri-
cally pumped single-photon source containing a single QD as
optically active element. The hybrid modeling approach allows
to compute the essential quantum optical figures of merit

drift-diffusion equations
⚪ transport + recombination
 of continuum carriers
⚪ quasi-equilibrium distributions

quantum master equation
⚪ evolution of confined quasi-
 particles (many-body problem)
⚪ non-equilibrium distributions

carrier capture/ escape
dissipative charge transfer

Poisson‘s equation
self-consistent electric field

control
electric contacts, ext. circuit
(boundary conditions)

photon emission
⚪ emission rates
⚪ correlation functions

Figure 1. Schematic illustration of the modeling approach: A QME describing
a system of quantum dots is self-consistently coupled to the drift-diffusion
equations. Both (sub-)systems exchange charge carriers by capture and escape
and interact via their self-consistently generated electric field.

such as the single-photon emission rates and the second order
intensity correlation function along with a spatially resolved
simulation of the current flow. The simulations are carried out
using a Voronoï box based finite-volume Scharfetter-Gummel
method with implicit Euler time stepping. The numerical
results are in good agreement with experimental findings.

IV. SUMMARY

Quantum dot devices can be simulated by a hybrid quantum-
classical model, which combines a quantum kinetic many-
body problem with semi-classical transport theory. We studied
the fundamental thermodynamic properties of the coupled
system, in particular the conservation of the total charge and
consistency with the second law of thermodynamics. The
hybrid model greatly enhances the range of application of
semi-classical transport simulations to novel devices such as
single-photon sources and QD polariton lasers.
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