
 

  
Abstract—We present a new numerical method to study the 

linear and nonlinear response of dispersive and nonlinear 2D 
materials by incorporating a nonlinear generalized source (GS) 
into the finite-difference time-domain (FDTD) method. This new 
method is particularly powerful when applied to the analysis of 
2D materials, as most such materials cannot be studied directly by 
traditional FDTD method due to their vanishingly small thickness. 
A typical graphene grating has been studied to verify the accuracy 
of the proposed GS-FDTD method, and its predictions agree well 
with other well-known frequency-domain numerical methods. 
 

Index Terms—nonlinearity, nonlinear generalized source (GS), 
SHG, THG, FDTD, 2D materials. 

I. INTRODUCTION 

WING to its unique and novel linear optical properties, 
two-dimensional (2D) materials have been widely used in 

practical applications [1]-[3], including nanolasers, sensors, 
solar cells, and optical modulators. In addition to the 
outstanding linear property, the nonlinear property of 2D 
materials, particularly the second-harmonic generation (SHG) 
and third-harmonic generation (THG), play an equally 
important role in optical regime [4]-[6]. For example, some 
typical 2D materials (such as graphene and transition-metal 
dichalcogenides) are already used to design high-performance 
nanoscale frequency mixers and other active optoelectronic 
devices. However, these promising applications present serious 
challenges for traditional FDTD method [7]. Different from the 
numerical analysis of strong nonlinearity caused by multipactor 
in high-power microwave devices [8][9], if we want to study 
the extremely week SHG and THG by using FDTD method, we 
have to solve complex, computationally intensive time-domain 
convolution integrals [10][11]. Such integrals generally require 
large computational time and memory, and these computational 
resources increase rapidly upon marching the algorithm in time. 
To avoid these problems, currently the FDTD method is mostly 
used for instantaneous, dispersionless nonlinear effects, such as 
the Kerr effect. However, in the study of optical nonlinearities 
of 2D materials, one is primarily interested on the second- and 
third-harmonic generation, as these nonlinear optical effects are 
used in many active photonic nanodevices. An additional 
challenge comes from the fact that second- and third-order 
nonlinear susceptibilities are usually dispersive and anisotropic. 
In order to overcome these challenges and be able to study the 

 
 

SHG and THG in 2D materials, we developed a new method 
described here, namely a GS-FDTD that integrates the GS and 
FDTD methods. 

II. ALGORITHM 

From the definitions [12] of second- and third-harmonic 
generation, it is known that the intensity of SHG and THG is 
determined only by the local field at the fundamental frequency 
(FF). Moreover, compared to other nonlinear processes, the 
SHG or THG are by far the most studied as many technological 
applications rely on these nonlinear optical interactions. 
Importantly in this context, we can study SHG or THG with 
only two different linear FDTD simulations. The first linear 
simulation consists of exciting the system by a regular, linear 
source, whereas in the second simulation the system is excited 
by a nonlinear generalized source (GS). The basic steps of the 
implementation of the GS-FDTD method are summarized in 
what follows. 

Step 1: Linear simulation at fundamental frequency 
In the first linear FDTD simulation, we assume there are only 

linear materials in the computational region, and stimulate this 
linear system with a linear source at the FF. As a result, we can 
calculate the time-domain (TD) near-field distribution at FF by 
using one single FDTD simulation. 

Step 2: Nonlinear generalized source evaluation 
Different from the first linear simulation, the second linear 

simulation at high-order frequencies is excited with a nonlinear 
generalized source. Such nonlinear generalized source [4][5] 
for the THG of graphene is evaluated as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 33 , 3 ,i s ijkl j k l
jkl

J E E Eω ω σ ω ω ω ω ω= Δ    (1) 

where, the subscripts (i,j,k,l) represent the components (x,y,z) 

individually. ( ) ( ) ( )3 3ijkl ij kl ik jl il jk effhδ δ δ δ δ δΔ = + + and ijδ is 

the Kronecker delta. As the nonlinear surface current lies onto the 
plane of 2D materials, the value of the normal component of 
current density in (1) is zero. 

In order to compute the frequency-domain (FD) near-field in 
(1), the TD near-field distribution at FF obtained at Step 1 is 
first Fourier transformed to the frequency domain. 
Subsequently, we use (1) to evaluate the FD nonlinear current 
density. To incorporate these FD nonlinear current sources into 
the FDTD simulation, we inverse Fourier transform them to 
obtain the corresponding TD nonlinear current sources. Here, 
we note that the number of frequency sampling points should 
satisfy Nyquist-Shannon sampling theorem strictly, so that the 
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final TD nonlinear current source can be calculated accurately 
via the inverse Fourier transformation. 

Step 3: Linear simulation at high-order frequency 
In the second linear FDTD simulation, we can assume that 

there are only linear materials. However, unlike the procedure 
in Step 1, the second linear FDTD simulation is excited with the 
time-dependent nonlinear current source obtained at Step 2 
rather than an external excitation. In this way, we can 
accurately calculate the intensity of SHG and THG, and in fact 
any other instantaneous nonlinear optical process. Compared to 
the nonlinear frequency-domain method [13][14], the FD 
electric field at different frequencies in (1) can be obtained 
from a single FDTD simulation via Fourier transformation, 
rather than repeating the FD simulation for each frequency. 
Thus, GS-FDTD is usually computationally less demanding 
and more efficient than nonlinear FD methods. 

III. RESULTS AND DISCUSSION 

The proposed GS-FDTD method is a general numerical 
method to study the SHG and THG in 2D materials. In order to 
illustrate its versatility and efficiency, we investigate here the 
double resonance phenomenon in graphene nanostructures 
[15]. As shown in Fig.1, our photonic structure consists of a 
periodic graphene grating with the ribbons oriented along the X 
axis. The period in this example is Λ=100 nm, and the width of 
the ribbons, W=86 nm. The graphene grating is placed in the XY 
plane, and its chemical potential is 0.6 eV. The relaxation time 
is 0.25 ps, and the temperature is T=300 K.  

 
Fig. 1: Schematics of a graphene grating with period Λ and width W . 

In the first linear FDTD simulation, the graphene grating is 
illuminated by a plane wave with a Gaussian pulse envelope. 
This pulse covers the whole fundamental-frequency range [30- 
150 THz]. The incident angles in Fig.1 are 0θ = and 0φ = . 

Based on its FF near-field distribution, we use the proposed 
GS-FDTD method to calculate the nonlinear response of this 
graphene grating, and the corresponding nonlinear results are 
given in Fig. 2. Similar to the linear case, there are a series of 
strong peaks in Fig. 2a, the near-field profiles for the first three 
peaks being depicted by Figs. 2b through 2d. In addition, we 
have compared our results with the well-known GS-RCWA 
method [14][15] in Fig. 2a, which shows that they agree very 
well. This verifies the accuracy of the proposed GS-FDTD.  

As we known, GS-RCWA is a specialized method, which is 
highly efficient for several particular applications. But its major 
challenge is that it is limited to model periodic structures, and 
just applicable primarily to diffraction problems. By contrast, 
the proposed GS-FDTD method is a general-purpose numerical 
method. In particular, it can be utilized to model not only 
periodic structures, but also devices of finite extent. More 
importantly, in addition to the diffraction problem just 

discussed, GS-FDTD method can be used to study much more 
complicated nonlinear problem, such as light propagation in a 
nonlinear medium in non-paraxial approximation, design of 
high-Q nonlinear photonic crystal cavities, and radiation from 
particle clusters. Therefore, GS-FDTD method is more general 
and suitable for study of nonlinear optical phenomena. 

 
Fig. 2: Nonlinear results at TH: (a) Comparison of THG 
calculated by different methods and (b)-(d) Field profile of |Ex| 
for the first three resonance modes in Fig. 2a. 

REFERENCES 
[1] A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, no. 

5934, pp:1530-1534, 2009. 
[2] F. Schwierz, “Graphene transistors,” Nature Nanotech. vol. 5, no. 7, pp. 

487-496, 2010. 
[3] B. Radisavljevic, A. Radenovic, J. Brivio, I. V. Giacometti, and A. Kis. 

"Single-layer MoS2 transistors," Nature Nanotech. Vol.6, no. 3, pp. 
147-150, Dec 2011. 

[4] S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood 
Jr, “Optical third-harmonic generation in graphene,” Phys. Rev. X, vol. 3, 
pp. 021014, June 2013. 

[5] J. L. Cheng, N Vermeulen, and J. E. Sipe, “Third order optical 
nonlinearity of graphene,” New J. Phys. vol. 16, p.053014, May 2014. 

[6] N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. 
Zhao, “Second harmonic microscopy of monolayer MoS 2,” Phys. Rev. 
B, vol. 87, no. 16, p.161403, April 2013. 

[7] A. Taflove and S. C. Hagness, Computational Electrodynamics: The 
Finite-Difference Time-Domain Method, 3rd ed. Artech House, 2005. 

[8] J. W. You, H. G. Wang, J. F. Zhang, Y. Li, W. Z. Cui and T. J. Cui, 
“Highly efficient and adaptive numerical scheme to analyze multipactor 
in waveguide devices,” IEEE Trans. Electron Devices., vol. 62, no.4, 
pp.1327-1333, March 2015. 

[9] J. W. You, H. G. Wang, J. F. Zhang, S. R. Tan, and T. J. Cui, “Accurate 
numerical method for multipactor analysis in microwave devices,” IEEE 
Trans. Electron Devices., vol. 61, no.5, pp.1546-1552, May 2014. 

[10] R. M. Joseph, and A. Taflove, “FDTD Maxwell’s equations models for 
nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag., 
vol. 45, no.3, pp.364-374, March 1997. 

[11] A. Taflove, A. Oskooi, and S. G. Johnson, eds., Advances in FDTD 
Computational Electrodynamics: Photonics and Nanotechnology, Artech 
House, 2013. 

[12] R. W. Boyd, Nonlinear Optics, 3rd ed. Academic Press, 2008. 
[13] F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical 

modeling of second harmonic generation in optical waveguides using the 
finite element method,” IEEE Journal of Quantum Electronics, vol. 33, 
no. 10, pp. 1727-1733, Oct 1997. 

[14] M. Weismann and N. C. Panoiu, “Theoretical and computational analysis 
of second- and third-harmonic generation in periodically patterned 
graphene and transition-metal dichalcogenide monolayers,” Phys. Rev. B. 
vol. 94, p.035435, July 2016.  

[15] J. W. You, J. You, M. Weismann, and N. C. Panoiu, “Double-resonant 
enhancement of third-harmonic generation in graphene nanostructures,” 
Phil. Trans. R. Soc. A. vol. 375, p. 20160313, March 2017. 

NUSOD 2017

222




