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Abstract—Several numerical methods for solving the Maxwell-
Liouville equations have been published, featuring different
accuracy, application range, and computational complexity. We
implement the most established method on a multi-core central
processing unit (CPU) as well as on a graphics processing unit
(GPU) and demonstrate the efficiency of both implementations.
The acquired performance values may serve as a reference
for future performance measurements of alternative numerical
methods.

I. INTRODUCTION

The Maxwell-Liouville equations are a valuable tool for
modeling light-matter interaction in nanoscale optical devices
in general and quantum cascade lasers (QCLs) in particular
[1]. While the electric and the magnetic field are described by
Maxwell’s equations, the carrier transport is modeled with a
density matrix approach (i.e. the Liouville-von Neumann equa-
tion), that takes an arbitrary number of quantum mechanical
energy levels N into account. For the simplest case N = 2 the
equation set is equal to the Maxwell-(optical) Bloch equations.

Due to the nonlinearity of the Maxwell-Liouville equations,
numerical methods are usually required to solve them. Natu-
rally, the computational workload increases with finer spatial
and temporal discretization. However, also the number of
energy levels N has a large impact on the workload since
N? density matrix elements have to be calculated for every
discretization step.

In order to cope with the rising computational demands
the energy level count is held low in simulations and/or
approximations are applied (e.g. the rotating wave approxi-
mation (RWA) or the wave packet approximation [2]). These
approximations inevitably omit certain features which may
be crucial for understanding the dynamics of the simulated
device. Therefore, the appropriate way to handle the compu-
tational workload is to exploit the parallel computing capabil-
ities offered by modern high-performance computing (HPC)
architectures.

In this contribution, we present two implementations of a
selected numerical method on different hardware architectures.
On the basis of performance measurements we demonstrate the
efficiency of both implementations.
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II. NUMERICAL METHODS FOR THE
MAXWELL-LIOUVILLE EQUATIONS

Several numerical methods have been proposed in literature
featuring different accuracy and computational complexity.
The methods described in the following can be applied to
the Maxwell-Liouville equations without the aforementioned
approximations.

The pioneering work was done by Ziolkowski, Arnold and
Gogny [3]. Their approach combines the Finite Difference
Time Domain (FDTD) method for Maxwell’s equations with
the Crank-Nicholson scheme for the optical Bloch equations.
While this method can be implemented very easily (the
implicit nature of the Crank-Nicholson scheme is resolved by
multiple predictor-corrector steps) and gives the correct results
for a system with two energy levels, it fails when it is extended
to a system with more energy levels [4].

Bidégaray proposed an alternative to the Crank-Nicholson
scheme [5]. The alternative approach solves the Liouville-von
Neumann equation with the help of operator splitting. Thus,
the approach yields correct results for more than two energy
levels. However, the required matrix exponential calculation
has to be implemented efficiently, e.g. with the help of an
external library.

The major drawback of the FDTD method is its numerical
dispersion. Hence, the work of Marskar and Osterberg [6] —
also based on the operator splitting technique mentioned be-
fore — incorporates the Pseudo-Spectral Time Domain (PSTD)
method for Maxwell’s equations. By transforming the fields
into a pseudo-spectral domain with respect to the spatial
coordinate the spatial derivatives can be calculated easily. As
long as the Nyquist-Shannon sampling theorem is not violated,
this method is more accurate than FDTD. However, this comes
at the cost of multiple Fourier transform calculations, which
must be implemented efficiently as well.

We selected the FDTD-Crank-Nicholson method as starting
point because despite its shortcomings it is the most estab-
lished approach.

III. PERFORMANCE MEASUREMENT

The first implementation of the FDTD-Crank-Nicholson
method is based on OpenMP and is executed on a multi-
core central processing unit (CPU). The second one makes use
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Fig. 1. Performance scaling of the CPU implementation of the FDTD-Crank-
Nicholson method for different numbers of grid points.

of the NVIDIA CUDA framework in order to outsource the
computations to a graphics processing unit (GPU). We used
a quad-socket Intel Xeon Processor E7-4870 with 40 cores in
total as test CPU, the test GPU is a NVIDIA Tesla K20c. The
simulations are carried out at least 10 times to ensure repro-
ducibility of the performance results. The simulation results
of the two-level system from [3] serve as first benchmark, our
simulation results are consistently checked against theirs.

It should be noted that the time required to set up data
structures or transfer results is not included in our execution
time measurement. Especially for the GPU this time is not
negligible and produces fixed costs.

IV. RESULTS AND DISCUSSION

We have measured the performance of both the CPU as well
as the GPU implementation of the FDTD-Crank-Nicholson
method and discuss the results in the following. First of all,
the method clearly benefits from parallelization. Depending on
the problem size (i.e. number of grid points) a speedup of 29
(or 34, respectively) is achieved using 40 cores (see Fig. 1). An
increase in performance is observed for large problem sizes.

The performance results of the CPU implementation on 40
cores is subsequently compared to the GPU implementation
performance. As depicted in Fig. 2, the GPU outperforms
the CPU by factor 2.0 to 2.4. This speedup is reasonable if
one considers the ratio of theoretical peak performance values
between the GPU and the CPU models in question, which is
approximately 3. Of course, this comes at the cost of higher
programming efforts and the aforementioned setup time and
data transfer time. Finally, the GPU implementation exploits
the parallel potential better for large problem sizes.

V. CONCLUSION AND OUTLOOK

The results in the section before show that our FDTD-
Crank-Nicholson implementations (both CPU and GPU) are
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Fig. 2. Performance comparison of the CPU implementation with 40 threads
vs. the GPU implementation. Both are implementations of the FDTD-Crank-
Nicholson method.

o

already well-optimized and solve the Maxwell-Liouville equa-
tions for a two-level system efficiently.

As the next step, we plan to implement the other numerical
methods we discussed above. Then, we simulate the same
two-level system with the corresponding implementations and
compare their performance values with those of the FDTD-
Crank-Nicholson implementations. Such a comparison has
not been performed yet (to our best knowledge). Also, since
performance data have been published in only few cases
(additionally, different hardware has been used) a comparison
based on literature research is infeasible.

Subsequently, the number of energy levels is increased
and the performance is measured. While the impact of the
additional workload on the performance cannot be estimated
yet, the present results indicate that the parallel computing
capabilities of the architectures in question will be exploited
better.
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