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Abstract— In our presentation, I will review work done in
enabling the development of two-dimensional nanomaterials for
optoelectronic applications. The focus will be on the materials
and the theories available for modeling them. I will start with
a survey of the nanomaterials fabricated and predicted to exit,
together with a discussion of their physical properties. This will
be followed by a few examples of optoelectronic devices designed
using these materials. Finally, we will present an overview of
the theoretical tools developed to study electrons and phonons
in these materials.

I. 2D NANOMATERIALS

It is well-known that the first two-dimensional (2D) mate-
rial was graphene [1]. The other most studied 2D material is
the class of transition metal dichalcogenides (TMD), with the
best known example being MoS2. Other compound 2D mate-
rials, such as BN, have also been studied. Lesser known is the
whole series of elemental 2D materials such as silicene [2],
germanene, stannene, phosphorene, and borophene that have
been fabricated [3].

II. OPTOELECTRONIC DEVICES

Of the above 2D materials, only phosphorene, BN and the
TMD’s have a band gap. Hence, they are prime candidates
for optoelectronic devices. Nonetheless, the others can have
a gap introduced via a variety of mechanisms such as finite-
size (i.e., nanoribbons) and on a substrate.

Use as a photodetector has been the most studied opto-
electronic device. An example of a study of using photonic
integration to enhance the interaction of light and a 2D
material is shown in Fig. 1. Other optoelectronic devices
will be presented.

One of the most sophisticated codes for computing de-
vice properties ia the Atomistix Toolkit (ATK) one from
Quantum Wise. An example device simulation is shown in
Fig. 2. Electron transport through two-probe devices can be
simulated.

III. ELECTRON THEORY

The electronic properties have been computed using both
first-principles and empirical methods. First-principles meth-
ods used were invariably density-functional theory (DFT)
based. These are known to be computationally intensive,
particularly for modeling devices. Nonetheless, they have
been used to modeled, e.g., graphene nanoribbon transistors
using the ATK software. It is well-known that the electronic
properties are subject to the band-gap problem, which there-
fore makes it difficult to really predict the optical properties.
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Fig. 1. Photocurrent study of a graphene device integrated with a silicon
cavity. From [4].

Fig. 2. A graphene nanoribbon transistor modeled using ATK software.
From http://docs.quantumwise.com/manuals/Introduction.html.

For both of the above reasons, empirical techniques are
much more preferable for modeling optoelectronic devices.
The method of choice is the 𝑘 ⋅ 𝑝 method [5], though
occasionally the tight-binding method is used. A number of
applications of the theory have been made to 2D materials.
The earliest was, of course, for graphene with its linear band
structure near the Fermi energy. For example [6],

ℋ𝑖 = 𝑎61 (𝑘𝑦J𝑥 + 𝑘𝑥J𝑦) + 𝑎11
(
𝑘2𝑥 + 𝑘2𝑦

)
+ 𝑎62

[
(𝑘2𝑦 − 𝑘2𝑥)J𝑥 + 2𝑘𝑥𝑘𝑦J𝑦

]
, (1)

where the 𝐽𝑖 are pseudospin matrices. This has been subse-
quently extended to other materials such as phosphorene [7]:

ℋ = ℋ𝑖 +ℋ𝑒, (2)

ℋ𝑒 = ℋ𝜖 +ℋ𝐸 +ℋ𝐵 +ℋ𝑚𝑖𝑥, (3)

ℋ𝑖 = 𝑎1𝑘
2
𝑥 + 𝑎2𝑘

2
𝑦 +

∑
𝑖≤𝑗 𝑎𝑖𝑗𝑘

2
𝑖 𝑘

2
𝑗 + . . . , (4)

ℋ𝜖 =
(
𝑒1 + 𝑒2𝑘

2
𝑥 + 𝑒3𝑘

2
𝑦

)
𝜖𝑥𝑥 +

(
𝑒5 + 𝑒6𝑘

2
𝑥 + 𝑒7𝑘

2
𝑦

)
𝜖𝑦𝑦

+
(
𝑒9 + 𝑒10𝑘

2
𝑥 + 𝑒11𝑘

2
𝑦

)
𝜖𝑧𝑧 + . . . , (5)

NUSOD 2017

113978-1-5090-5323-0/17/$31.00 ©2017 IEEE
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ℋ𝑚𝑖𝑥 = 𝑚2𝐵𝑦𝐸𝑧𝑘𝑥 +𝑚3𝐵𝑧𝐸𝑥𝑘𝑦 + . . . (8)

The Hamiltonian for silicene has also been derived.

IV. PHONON THEORY

Phonon spectra in 2D nanomaterials have almost ex-
clusively been computed using DFT-based codes and are
complex and prone to qualitative errors due to the various
approximations such as use of functionals [8]. An alterna-
tive model is a classical continuum model and one such
model has been introduced for acoustic phonons in graphene
nanoribbons [9].

For example, for graphene, we get

𝑐11
∂2𝑢𝑥

∂𝑥2
+ 𝑐12

∂2𝑢𝑦

∂𝑥∂𝑦
+

1

2
(𝑐11 − 𝑐12)

(
∂2𝑢𝑥

∂𝑦2
+

∂2𝑢𝑦

∂𝑥∂𝑦

)

= −𝜌𝜔2𝑢𝑥, (9)
1

2
(𝑐11 − 𝑐12)

(
∂2𝑢𝑥

∂𝑥∂𝑦
+

∂2𝑢𝑦

∂𝑥2

)
+ 𝑐12

∂2𝑢𝑥

∂𝑥∂𝑦
+ 𝑐11

∂2𝑢𝑦

∂𝑦2

= −𝜌𝜔2𝑢𝑦, (10)

44
∂2𝑢𝑧

∂𝑥2
+ 𝑐44

∂2𝑢𝑧

∂𝑦2
= −𝜌𝜔2𝑢𝑧. (11)

where 𝑢𝑖 are the displacements, 𝜌 is the mass density, and 𝜔
is the vibrational (angular) frequency, and 𝑇𝐼 and 𝑆𝐽 denote
stress and strain, respectively. Here we have used Voigt
notation for tensors. The displacements 𝑢𝑥 and 𝑢𝑦 are in-
plane displacements and 𝑢𝑧 is the out-of-plane displacement.

These equations are modified in the MoS2 case due to its
piezoelectricity. One finds instead
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This system of equations is only complete if we also solve
for the Maxwell-Poisson equation

𝐷𝑖 = 𝜀𝑖𝑗𝐸𝑗 + 𝑒𝑖𝐼𝑆𝐼 + 𝑃𝑠𝑝. (15)

Example acoustic phonon dispersions for graphene are given
in Fig. 3. Models for silicene and phosporene have also been
introduced.
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Fig. 3. Acoustic phonons of graphene.

V. SUMMARY

Empirical models of electrons and phonons in 2D mate-
rials have been developed in order to facilitate the realistic
modeling of optoelectronic devices.
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