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Abstract—Material gain and linewidth of Quantum Dot ensemble 
are calculated assuming the Gaussian distribution of the density 
of states due to the size-deviation of dots. The effect of electric 
field is incorporated in the analysis through the mean and 
variance of energy states. The results showing the enhancement 
of optical gain and linewidth with electric field indicate 
important applications in sub-cellular medical imaging.  
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I. INTRODUCTION 

The complete confinement of carriers plays key role in 
the novelty of the performance of quantum dot (QD) based 
photonic devices. As already reported in literature, QD LED 
offers low turn-on voltage and high quantum efficiency [1], 
QD solar cell offers high power conversion efficiency [2], QD 
SLEDs find application in optical coherence tomography 
(OCT) [3]. QDs grown on a layer, such as using Stranski - 
Krastanov growth method, vary in size, leading to the density 
of states (DOS) to deviate from the ideal delta function. This 
inhomogeneous broadening results in increase in spectral 
linewidth. High gain and linewidth of optical sources are 
important for OCTs in sub-cellular imaging. As an external 
electric field affects the energy states [4], it is expected to 
change the DOS and other dependent optical properties. In this 
paper, we investigate the effects of the external electric field 
on the gain and linewidth of QD ensemble.  

II. THEORY 

When an external electric field, Ef is applied along z-
direction in QD, the z- dependent wave function (Z)  is given 
by, 
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where znE  is energy eigen-value of a single QD of dimensions 

d1, d2, and d3 along x, y, and z-directions respectively, and  
n=1,2,3, … is quantum number along z-direction. The solution 
of (1) is a combination of Airy functions [4]. Using the 
appropriate boundary conditions, the wave functions and 
energy eigen-values are calculated numerically. The density of 

states (DOS) of an ensemble of QDs having surface dot 
density, ND is assumed to have Gaussian distribution and is 
given by the following expression: 
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where 0E  is the mean energy and 0σ is the standard deviation 

in absence of electric filed.  
      As mentioned earlier, the eigen-energy becomes a function 
of electric field, so the mean energy in (2) changes ( E ).An 
approximate expression for σ  in presence of electric field is 
obtained as follows: 
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where field dependence appears through E . 
       Next, the absorption and emission coefficients are 
calculated using the Fermi’s golden rule. The material gain of 
the QD ensemble is given by the difference between the 
emission and absorption coefficients [5]: 
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where i is the initial state, f is the final state, fiP is the 

momentum matrix element (containing wave functions 
overlapping term), ωfi is the frequency of the incident light, nr 
is the refractive index of the QD material, c is free space light 
velocity, m0 is the free electron mass, 0ε  is free space 

permittivity, e is electronic charge, )(Efi and )(Ef f are Fermi 

occupation probability of electron in valence band and 
conduction band, respectively. 
       For the calculation of gain, quasi Fermi levels are 
obtained for given carrier concentrations. The relation 
between carrier concentration and quasi Fermi level are 
derived as follows: 
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III. RESULTS 

 
The results shown below are done for InAs/ GaAs QD 

system as an example with dot size of 10 nm. Material gain is 
computed using (4) and plotted for different electric fields in 
Fig. 1. A red shift in the gain peak is observed because of the 
lowering of the quantized energy state of QD. It may also be 
noted that the peak gain increases with the electric field. The 
variation of the peak gain with electric field is shown in Fig. 2. 
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         Figure 1.  Optical gain spectrum for different electric fields 

 
The increase in gain may be due to the reason that the 

carrier occupancy of the quantized energy states is large as 
electric field increases. So, the upward optical transition for 
absorption decreases while the downward transition for 
emission increases, giving rise to gain enhancement. 
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              Figure 2.  Variation of peak gain with electric field 
 
       Fig. 3 shows the linewidth enhancement with electric 
fields. The enhancement is small for low field. But there is 
rapid enhancement for high electric field. The enhancement is 
due to the change in standard deviation with the external 
electric field. 
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            Figure 3.  Variation of linewidth with electric field 
 

IV. CONCLUSIONS 

 

The results show that there is enhancement in both red-
shifted optical gain and linewidth of the quantum dot 
ensemble, with the application of external electric field. Thus, 
external electric field can be used to achieve the high gain and 
broadband requirement of optical sources in optical coherence 
tomography for sub-cellular imaging. 
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