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Abstract- We describe a numerical method to simulate the modal 

behavior of microring resonators based on the extension of Coupled 

Mode Theory (CMT). Our approach uses straightened, equivalent 

waveguide model with appropriate inner boundary conditions and 

allows the numerical combination of various structural elements.  

 

I. INTRODUCTION 

 

Semiconductor-based tunable light sources are key devices 

for digital coherent systems. To enhance the effectiveness and 

transmission capacity, wider tuning range as well as narrower 

linewidth is required, while maintaining low power 

consumption. Microring resonators are promising reflective 

optical elements for these novel signal light sources due to their 

customizable reflectance spectra and compact size. 

The ability to use simple mathematical models to simulate 

microrings is a key capability behind their success in practical 

applications. There are previously formulated methods available 

to model them such as Finite Difference Time Domain (FDTD) 

[1], semi-analytical [2], conformal transformation [3] and 

modified Coupled Mode Theory (CMT) [4] by defining integral 

expression for coupling coefficient. In this paper we show a new 

approach based on the extension of CMT with appropriate inner 

boundary conditions. It allows to handle microrings as 

straightened waveguides and enables the easier numerical 

combination with various gratings, waveguides in the algebraic 

eigenvalue problem solved by Finite Difference Method. 

 

II. THEORY AND NUMERICAL MODEL 

 

The lasing mode of DFB or DBR-based tunable lasers is 

usually calculated and analyzed by using CMT [5]. A resonator 

mode is decomposed to forward and backward propagating 

waves: 𝐸(𝑧) = 𝐸𝑓(𝑧)𝑒
−𝑖𝛽𝑧 + 𝐸𝑏(𝑧)𝑒

𝑖𝛽𝑧, where amplitudes Ef 

and Eb can only have slow variation compared to the 

exponentials. Substituting this assumption into 1D Helmholtz 

equation and applying equidistant discretization for N points 

leads to an algebraic eigenvalue problem: 
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Here D stands for the symmetric difference operator (matrix), 

the diagonal N and K matrices for the material parameters, I is 

the unit matrix and k0 is the complex wavenumber. The enforced 

boundary conditions (facet reflectivities) are: 
 

𝐸𝑏,𝑁 = 𝑟𝑟𝐸𝑓,𝑛 and 𝐸𝑓,1 = 𝑟𝑓𝐸𝑏,1  (2) 
 

This algebraic problem can be solved by Finite Difference 

Method. When a microring is put at a facet the constrain on 

reflectivity becomes invalid and must be substituted with a more 

complicated one. We derive these constrains for rectified models 

of grating-free and grating-integrated microrings.   

 

A. Extension of CMT for grating-free microring 
 

We assume a two-armed grating-free micro-ring reflector 

located on the right side of the laser cavity (Fig. 1.) 

 
Fig. 1. Geometry of a two-armed grating-free microring 

 
Fig. 2. Rectified model of a two-armed grating-free microring (the upper 

waveguide section can be omitted from the analysis) 
 

The lengths and effective indices of the two waveguide sections 

must be identical except for the coupling coefficients η1 and η2. 

In this case, it is enough to analyze the forward traveling wave 

in the bottom waveguide (𝑎1
+), which is partially reflected via 

the top arm (𝑑1
−). The forward traveling wave in the top arm 

could be reflected via the bottom arm similarly. Since the exact 

path of the traveling wave is not important, 𝑑1
− can be substituted 

with 𝑎1
−, which allows the rectification of the relevant section of 

the arrangement. 

Inner boundary conditions are enforced at the entrance and exit 

points of the straightened microring: 
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We extended the algebraic eigenproblem (Eq. (1)) with the inner 

points of the microring for the counterclockwise traveling wave, 

and the independent boundary variables 𝑎1
+, 𝑎2

+, 𝑐2
−. Dependent 

variables can be eliminated from the matrix exploiting Eqs.(3) 

and (4). Note that the clockwise traveling wave is not formulated 

explicitly, because it would correspond to the otherwise 

analogous upper waveguide section.  

 

B. Extension of CMT for grating-loaded microring 
 

Ring with integrated grating has one waveguide bus and can 

be modeled as straightened waveguide with grating at the center.  

 
Fig. 3. Rectified model of a grating integrated microring  

 

After discretization of inner points of ring, linear relationships 

among the amplitudes give inner boundary conditions. The ring 

coupling coefficient is relabeled as η. 
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Eq.(5) is irrelevant for the eigenvalue problem, as it just gives 

the outcoupled amplitude. Therefore, here the algebraic 

eigenproblem (Eq.(1)) should be extended with the inner 

variables of the microring section, and the independent 

𝑎1
+, 𝑎2

+, 𝑏2
−.  𝑏1

− = 0, and the other dependent variables are 

eliminated using Eqs.(5) and (6) together with the boundary 

condition for the other side of the straight grating.  

 

III. RESULTS, VALIDATION 

 

The method was implemented in MATLAB and the cold 

cavity reflectivity characteristic of microrings were successfully 

reproduced. Here simple grating-free cavity (Lw=600μm) 

bounded by a high-reflectivity broadband mirror (Rf=64%), and 

grating-free microring (η1 = η2 = η, Perimeter: Lp=300μm) is 

analyzed. This structure was optimized for 1550nm main lasing 

wavelength.    

 

A. No internal and bending losses in the cavity 
 

Eq.(1) was solved for the rectified model (L= Lw+ Lp=900μm) 

using outer boundary condition at front facet (Eq.(2)) and inner 

ones (Eqs.(3-4)) at ring section. The calculated cold cavity 

longitudinal modes (𝐼(𝑧) = |𝐸(𝑧)|2) shows that the intensity in 

the ring is reduced to half for η = 1, as only the forward traveling 

wave is coupled into the ring (Fig. 4). The intensity is zero in the 

second half of the microring (the gray background represents the 

straightened ring). The ring coupled intensity (Γax: mode 

confinement in ring) and the loss difference between the 1st and 

0th modes increase for smaller η, indicating higher finesse value. 

The loss of the central mode and cavity mode spacing decreases 

for smaller η, because the effective cavity length gets longer due 

to more roundtrips. 
 

 
η=1 

 
η=0.4 

Fig. 4. Cold cavity longitudinal modes (0th, +1st) for various  

coupling coefficients (η) 

 

B. Lossy microring configuration 
 

The bending loss can be substituted with absorption type 

internal loss in the rectified model, incorporated into the 

imaginary part of the complex refractive index. Here αint(z) can 

contain any type of internal loss along the longitudinal cavity. 
 

𝛼𝑖𝑛𝑡 = −
2 𝑙𝑛(𝛼90)

𝜋𝑅
, 𝑛(𝑧) = 𝑛′(𝑧) + 𝑖

𝜆𝛼𝑖𝑛𝑡(𝑧)

4𝜋
 (7) 

 

 
Fig. 5. Cavity mode data for lossless and lossy ring configuration (cold cavity) 

 

When bending loss was assumed (η = 0.4, 𝛼𝑖𝑛𝑡 = 10𝑐𝑚−1), the 

loss of 0th mode has increased the largest amount, because its 

intensity profile had largest overlap with the ring (Fig 5.).  

 

IV. CONCLUSION 

 

We described and validated an effective numerical method for 

longitudinal mode analysis of microring resonators. The inner 

points of ring are handled as straight waveguide in CMT 

applying appropriate boundary conditions. This approach allows 

any combination of waveguide, grating and microring structures 

in CMT, and results quick simulation of longitudinal mode 

profiles with their resonance wavelengths and modal losses.  
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