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Abstract—We present a highly accurate generalization of the
Scharfetter–Gummel scheme for the discretization of the current
densities in degenerate semiconductors under non-isothermal
conditions. The underlying model relies on the Kelvin formula for
the Seebeck coefficient, which has the intriguing property that the
∇T -term in the electrical current density expressions vanishes
exactly when passing to the drift-diffusion form – even though
the thermoelectric cross-coupling is fully taken into account.

I. INTRODUCTION

Many challenges faced in modern semiconductor devices
are related to heating phenomena [1]. The on-going minia-
turization of devices and the reduction of their feature size
leads to higher power loss densities inside the device structure.
As a consequence, self-heating phenomena such as thermal
breakdown, snapback phenomena, thermal lensing or the ther-
mal gain rollover in semiconductor lasers become important
effects, which decisively limit the device performance. More-
over, there is growing interest in thermoelectric technologies
for environmentally friendly conversion of heat directly into
electric energy using thermoelectric generators. The accurate
numerical simulation of such devices requires a consistent
description of the thermoelectric cross-effects on both the
continuous and discrete level.

II. THE ENERGY-DRIFT-DIFFUSION SYSTEM AND THE
KELVIN FORMULA FOR THE SEEBECK COEFFICIENT

The transport of charge and heat in semiconductors is self-
consistently described by the energy-drift-diffusion system [2]:

−∇ · ε∇φ = q (C + p− n) , (1)

∂tn−
1

q
∇ · jn = −R, (2)

∂tp+
1

q
∇ · jp = −R, (3)

cV ∂tT −∇ · κ∇T = H. (4)

The electrostatic potential φ generated be the electron density
n and the density of holes p is described by Poisson’s Eq. (1).
Here, q is the elementary charge, ε is the dielectric permittivity
and C is the built-in doping profile. The transport and recom-
bination dynamics of the electron-hole-plasma is given by the
continuity Eqs. (2)–(3), where R is the (net-)recombination
rate. The transport and generation of heat is modeled by
Eq. (4), where T denotes the (lattice) temperature, κ is the

thermal conductivity, cV is the volumetric heat capacity and H
is the heat generation rate. Taking thermoelectric cross-effects
into account, the electrical current densities are modeled as

jn = −σn (∇φn + Pn∇T ) , (5a)
jp = −σp (∇φp + Pp∇T ) , (5b)

where φn/p are the quasi-Fermi potentials and Pn/p denote
the Seebeck coefficients, which couple the current densities to
temperature gradients. The electrical conductivities read σn =
qMnn and σp = qMpp (with mobilities Mn/p). Following
Ref. [2], the heat transport Eq. (4) and the self-consistent heat
generation rate H are derived from fundamental principles of
linear irreversible thermodynamics.

We make a special choice for the Seebeck coefficients, that
yields solely the “classical” self-heating terms (recombination
heating, Joule heating and Thomson–Peltier heating) and no
additional – possibly artificial – heat sources. The correspond-
ing expressions for the Seebeck coefficients are found to be
given by the Kelvin formula [3, 4], i.e., the partial derivative
of the entropy density s with respect to the carrier density:

Pn = −1

q

∂s (n, p, T )

∂n
, Pp = +

1

q

∂s (n, p, T )

∂p
. (6)

Note that this definition differs from the often used
Heikes–Mott formula [3]. A very intriguing consequence of the
Kelvin formula is seen when passing from the “thermodynamic
form” of the current densities (5) to the drift-diffusion form:

jn = −qMnn∇φ+ qDn (n, T )∇n, (7a)
jp = −qMpp∇φ− qDp (p, T )∇p. (7b)

Surprisingly, the driving force related to the temperature gradi-
ent vanishes exactly – even though the thermoelectric effect is
fully taken into account. The ∇T -terms are partially absorbed
by the Seebeck terms in Eq. (5); the remaining parts are
“hidden” in the carrier density gradients and the temperature-
dependent transport coefficients. The diffusion coefficients in
Eq. (7) are given via the generalized Einstein relations [5]

qDn (n, T ) = kBTMng (n/Nc (T )) ,

qDp (p, T ) = kBTMpg (p/Nv (T ))

where the degeneracy factor

g (x) = x
d

dx

(
F−1 (x)

)
(8)
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gives rise to nonlinear diffusion as a consequence of Pauli-
blocking. In the non-degenerate limit (Maxwell–Boltzmann
statistics F (η) = exp (η)), the usual case of linear diffusion
g ≡ 1 is recovered. In general, F (η) is given by, e.g.,
the Fermi–Dirac integral or the Gauss–Fermi integral. The
effective density of states functions are denoted as Nc/v (T ).

III. CURRENT DENSITY DISCRETIZATION

For the numerical simulation of charge transport in semicon-
ductors, a naive finite difference discretization of the current
densities leads to instabilities due to the typically exponentially
varying carrier densities. The problem has been overcome
by Scharfetter and Gummel [6], who developed a stable
discretization scheme for the case of Maxwell–Boltzmann
statistics and isothermal conditions. In this paper, we gen-
eralize the Scharfetter–Gummel scheme to the more general
case of both degenerate materials (Fermi–Dirac statistics with
arbitrary density of states) and thermoelectric cross-coupling
using the Kelvin formula (6) for the Seebeck coefficients.

With the usual assumptions of constant electric field, mo-
bility and current density along the edge KL between two
adjacent nodes K and L in the grid (see Fig. 1), the discrete
electron current density projection jn,K,L is obtained from the
two-point boundary value problem (BVP):

kBT (x)

q δφK,L
g

(
n (x)

Nc (T (x))

)
dn

dx
= n (x) +

jn,K,L

qMn δφK,L
,

n (0) = nK , n (1) = nL.

(9)

The position on the edge r = xrL+(1− x) rK is described by
the parameter x ∈ [0, 1]. The electric potential difference reads
δφK,L = φL − φK . In the non-degenerate limit (g ≡ 1), the
problem (9) can be solved exactly assuming a linearly varying
temperature along the edge T (x) = xTL+(1− x)TK . In the
degenerate case (g 6≡ 1), however, no analytical solution is
possible. Following Refs. [5, 7], we derive an approximate
solution by “freezing” the degeneracy factor on a suitable
average along the edge g (n (x) /Nc (T (x))) → gn,K,L. As
a result, the discrete current density is obtained as

jn,K,L = qMnU
T,n
K,L

(
nLB

(
δφK,L

UT,n
K,L

)
− nKB

(
−δφK,L

UT,n
K,L

))
(10)

where UT,n
K,L = kBTK,Lgn,K,L/q is the edge-averaged thermal

voltage, B (x) = x/ (exp (x)− 1) is the Bernoulli function,

TK,L =
TL − TK

log (TL/TK)

is the logarithmically averaged temperature and the thermody-
namically consistent average of the degeneracy factor is [5, 7]

gn,K,L =
F−1 (nL/Nc (TL))−F−1 (nK/Nc (TK))

log (nL/Nc (TL))− log (nK/Nc (TK))
.

The accuracy of the scheme is investigated (i) analytically
and (ii) by comparison with the numerically exact solution
of Eq. (9). The latter is obtained using a shooting method
combined with numerical root finding. We show that the
scheme becomes exact in several limiting cases.

Fig. 1. The system (1)–(4) is discretized using the finite volume method with
Voronoï boxes as control cells [8]. A stable expression for the discrete current
density jn,K,L between two adjacent cells K and L is provided by Eq. (10).

IV. SUMMARY

We have developed a generalized Scharfetter–Gummel
scheme for the discretization of the current densities in de-
generate semiconductors under non-isothermal conditions. The
underlying thermoelectric transport model relies on the Kelvin
formula for the Seebeck coefficient, which has several appeal-
ing consequences. The discretization of the electrical current
density exploits the surprising feature of exactly vanishing
∇T -related driving forces in the continuous expression. A
detailed comparison with the numerically exact solution of
the corresponding two-point boundary value problem shows
that the new scheme is highly accurate and becomes exact in
several limiting cases.

ACKNOWLEDGMENT

This work was funded by the German Research Foundation
(DFG) under Germany’s Excellence Strategy – EXC2046:
MATH+ (project AA2-3). The author acknowledges valuable
discussions with U. Bandelow, T. Koprucki and H.-J. Wünsche.

REFERENCES
[1] D. M. Rowe, ed., Thermoelectrics Handbook: Macro to Nano. Boca

Raton: CRC Press, Taylor & Francis Group, 2006.
[2] G. K. Wachutka, “Rigorous thermodynamic treatment of heat genera-

tion and conduction in semiconductor device modeling,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 9, pp. 1141–1149, 1990.

[3] M. R. Peterson and B. S. Shastry, “Kelvin formula for thermopower,”
Phys. Rev. B, vol. 82, p. 195105, 2010.

[4] Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, “A note on the
electrochemical nature of the thermoelectric power,” Eur. Phys. J. Plus,
vol. 131, no. 4, p. 76, 2016.

[5] T. Koprucki, N. Rotundo, P. Farrell, D. H. Doan, and J. Fuhrmann, “On
thermodynamic consistency of a Scharfetter–Gummel scheme based on
a modified thermal voltage for drift-diffusion equations with diffusion
enhancement,” Opt. Quantum. Electron., vol. 47, pp. 1327–1332, 2015.

[6] D. L. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon
Read diode oscillator,” IEEE Trans. Electron Devices, vol. 16, no. 1,
pp. 64–77, 1969.

[7] M. Bessemoulin-Chatard, “A finite volume scheme for convection-
diffusion equations with nonlinear diffusion derived from the Scharfetter–
Gummel scheme,” Numer. Math., vol. 121, no. 4, pp. 637–670, 2012.

[8] P. Farrell, N. Rotundo, D. H. Doan, M. Kantner, J. Fuhrmann, and
T. Koprucki, “Drift-diffusion models,” in Handbook of Optoelectronic
Device Modeling and Simulation: Lasers, Modulators, Photodetectors,
Solar Cells, and Numerical Methods (J. Piprek, ed.), vol. 2, ch. 50,
pp. 733–771, Boca Raton: CRC Press, Taylor & Francis Group, 2017.

NUSOD 2019

8




