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Abstract—The device-scale simulation of electrically driven
quantum light sources based on semiconductor quantum dots
requires a combination of the (classical) semiconductor device
equations with cavity quantum electrodynamics. In this paper, we
extend our previously developed hybrid quantum-classical model
system – where we have coupled the drift-diffusion system with
a Lindblad-type quantum master equation – by including a self-
consistent Schrödinger–Poisson problem. The latter describes the
(quasi-)bound states of the quantum dot carriers. The extended
model allows to describe the bias-dependency of the emission
spectrum due to the quantum confined Stark effect.

I. INTRODUCTION

The currently unfolding “second quantum revolution” aims
at the development of novel quantum technologies that exploit
inherent quantum mechanical phenomena for communication
and information processing tasks. Many applications, such as
eavesdropping-secure encryption methods and optical quantum
computers, rely on efficient quantum light sources that emit
single photons on demand [1]. Semiconductor quantum dots
(QDs) have been identified as ideal optically active elements
for such devices, as they provide an atom-like discrete energy
spectrum and can be directly integrated into semiconductor-
based photonic resonators. In the interest of compactness and
scalability, electrical carrier injection is highly desirable to
overcome the need for external excitation lasers.

On the step from basic research to real world applications,
mathematical modeling and numerical simulation can assist
the development and optimization of novel device designs.
In many well-established simulation tools for optoelectronic
devices (e. g., conventional laser diodes, LEDs etc.), the drift-
diffusion model is coupled with semi-classical models for
the light-matter interaction (e. g., Maxwell–Bloch equations,
rate equations) to describe the optically active region. For
devices operating in the quantum optical limit, however, the
description of the light-matter interaction requires a fully
quantum mechanical approach using the framework of cavity
quantum electrodynamics [2], which is clearly beyond the
standard approach. To meet this requirement, we have devel-
oped a hybrid quantum-classical model system [3], that self-
consistently couples the drift-diffusion system to a Lindblad-
type quantum master equation [4], which describes the mi-
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Fig. 1. Schematic illustration of the building blocks and the coupling structure
in the Schrödinger-Poisson-Drift-Diffusion-Lindblad system (1)–(5) [5].

croscopic QD-photon system in second quantization. In this
paper, we extend our approach by including a self-consistent
Schrödinger–Poisson system, to model the energy shifts of
the QD carriers in the diode’s internal electric field (quantum
confined Stark effect).

II. MODEL EQUATIONS

We describe a comprehensive modeling approach for the
simulation of quantum light emitting diodes. The approach
is based on the hybrid quantum-classical model system
proposed in Ref. [3] and is extended by a self-consistent
Schrödinger–Poisson problem modeling the wave functions
and energy levels of the (quasi-)bound QD carriers: [5]

−∇ · ε∇φ = q (C + p− n) +Q, (1)

∂tn−
1

q
∇ · jn = −R− Sn, (2)

∂tp+
1

q
∇ · jp = −R− Sp, (3)

H0
α (φ)ψα = Eαψα (α ∈ {e, h}), (4)

∂tρ = − i
~
[H, ρ] +Dρ. (5)
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The system comprises the drift-diffusion system (1)–(3) for
the transport and recombination dynamics of the continuum
electrons and holes, a one-particle Schrödinger equation (4)
for each the QD bound electrons and holes, respectively, and
a Lindblad-type quantum master equation (5) for the density
matrix ρ. A schematic illustration of the “Schrödinger-Poisson-
Drift-Diffusion-Lindblad system” (1)–(5) and the interconnec-
tion of its building blocks is shown in Fig. 1.

The electrostatic interaction between the freely moving and
bound carriers of the system is described by Poisson’s Eq. (1),
where φ is the electric potential, n and p are the densities of
(continuum) electrons and holes, C is the doping profile, Q
is the charge density of the QD carriers, q is the elementary
charge and ε is the material’s dielectric constant. The current
densities jn/p in Eqs. (2)–(3) are given by the usual drift-
diffusion expressions and R models the (net-)recombination
of the continuum carriers. The quantization energy levels and
(envelope) wave functions of the QD carriers are determined
by the stationary Schrödinger Eq. (4), where the Hamiltonian

H0
α (φ) = −

~2

2
∇ · 1

m∗α
∇+ Uα ± qφ, α ∈ {e, h} , (6)

involves a position-dependent effective mass m∗α, the QD
confinement potential Uα and the electric potential φ given
by Eq. (1). The Schrödinger Eqs. (4) are solved with outgoing
wave conditions on a subset of the full computation domain.
In general, this is a non-Hermitian eigenvalue problem that
yields complex energy eigenvalues Eα ∈ C (quasi-bound
states). The many-body Hamiltonian H in the quantum master
Eq. (5) describes the one-particle energy contributions of the
QD carriers, the energy of the quantized radiation field, the
quantum-mechanical light matter interaction and the Coulomb
interaction between the bound carriers in second quantization:

H = εee
†e+ εhh

†h+ ~ω0a
†a

+ ~g
(
e†h†a+ a†he

)
− Ve,he†h†he.

(7)

Here, a and a† are the bosonic annihilation and creation
operators of the cavity photons and e (h) and e† (h†) are
the respective fermionic operators for the QD-bound electrons
(holes). Moreover, ~ω0 is the resonance energy of the cavity, g
is the light-matter coupling constant and Ve,h is the QD exciton
binding energy. The one-particle energies εα = Re (Eα) are
taken as the real values of the complex eigenvalues determined
by Eq. (4). The dissipation superoperator D (ρ) in Eq. (5)
models the irreversible coupling of the quantum system to
its macroscopic environment. This include the scattering of
carriers from the continuum to the QD states, spontaneous
decay of the QD exciton (to waste modes), emission of cavity
photons and pure dephasing. The respective transition rates
are driven by the classical carrier densities n, p in the vicinity
of the QD and involve the corresponding overlap integrals
using the wave functions from Eq. (4). Finally, the feedback
of the quantum system on its macroscopic environment is
mediated by the charge density Q and the scattering rates
Sn,p. The corresponding expressions are constructed following
Refs. [3, 5] as expectation values of the respective operators.
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Fig. 2. Calculated power spectrum P (ω) as a function of the applied bias.
The QD exciton (X) is tuned into resonance with a (broad) photonic cavity
resonance (C). The single-photon generation rate reaches a maximum at about
1.5V and then decreases due to excitation-induced dephasing at high currents.

III. RESULTS

We demonstrate our approach by numerical simulations of a
single-photon emitting diode. As indicated in Fig. 1, the model
system (1)–(5) allows to evaluate the quantum optical features
of the system in dependence on the state of its macroscopic
environment. In particular, we compute the power spectrum

P (ω) =
1

2π

∫ ∞
−∞

dτ e−iωτ 〈a† (τ) a (0)〉 (8)

(Fourier transform of the first-order autocorrelation function
of the cavity photons) as a function of the applied bias. The
result is shown in Fig. 2, where the QD exciton is tuned into
resonance with the photonic resonator mode via the quantum
confined Stark effect. Moreover, thanks to the fully self-
consistent coupling of the quantum mechanical subsystem and
its macroscopic environment (via Q and Sn/p), our simulations
reveal a noticeable impact of the QD on the current paths.

IV. OUTLOOK AND CONCLUSIONS

We have extended the hybrid quantum-classical model sys-
tem for the simulation of quantum light sources introduced
in Ref. [3] by a self-consistent Schrödinger–Poisson problem.
The extension allows to describe important phenomena such as
the quantum confined Stark effect and might be used to study
spectral diffusion of the emission energy in a future work.
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