High Resonance Frequency in a Coupled Cavity DFB-LD with Asymmetric Grating Coupling Coefficients by Photon-Photon Resonance

Takahiro Numai

Department of Electrical and Electronic Engineering, Ritsumeikan University 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan Phone: +81-77-561-5161 E-mail: numai@se.ritsumei.ac.jp

Abstract- Enhancement of resonance frequency in a coupled cavity DFB-LD with asymmetric grating coupling coefficients by photon-photon resonance is reported. The resonance frequency is 61.3 GHz and the 3-dB down band width is 82.7 GHz when the injected current is only 2.5 times the threshold current.

I. INTRODUCTION

To achieve high resonance frequencies for high speed direct modulations of semiconductor lasers, push-pull modulations [1]-[4], external injection of intensity modulated light [5], photon-photon resonance [6]-[9] have been studied. In this paper, to obtain a high resonance frequency and stable single longitudinal mode operation simultaneously, a coupled cavity DFB-LD with asymmetric gating coupling coefficients by photon-photon resonance is numerically studied. When the injected current is 2.5 times the threshold current, the resonance frequency f_r is 61.3 GHz and the 3-dB down bandwidth f_{3dB} is 82.7 GHz, which are much higher than $f_r = 37.2$ GHz and $f_{3dB} = 53.4$ GHz [8], respectively.

II. OPERATING PRINCIPLE AND STRUCTURE Rate equations are written as

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}S_1 &= \Gamma_1 \Big[G_1 - \beta_1 S_1 - \theta_{12} S_2 \Big] S_1 - \frac{1}{\tau_{\mathrm{ph1}}} S_1, \\ \frac{\mathrm{d}}{\mathrm{d}t}S_2 &= \Gamma_2 \Big[G_2 - \beta_2 S_2 - \theta_{21} S_1 \Big] S_2 - \frac{1}{\tau_{\mathrm{ph2}}} S_2, \\ \frac{\mathrm{d}}{\mathrm{d}t}n &= \frac{J}{ed} - \Big[G_1 - \beta_1 S_1 - \theta_{12} S_2 \Big] S_1 \\ &- \Big[G_2 - \beta_2 S_2 - \theta_{21} S_1 \Big] S_2 - \frac{1}{\tau_{-}} n, \end{split}$$

where S_i is photon density, Γ_i is an optical confinement factor, G_i is an amplification rate, β_i is a selfsaturation coefficient, θ_{ij} is a cross-saturation coefficient, τ_{phi} is photon lifetime where subscripts *i* and *j* are 1 or 2, *n* is carrier concentration, *J* is injected current density, *e* is the elementary charge, *d* is total thickness of active layers, τ_n is carrier lifetime. From small-signal analysis for $S_1 \gg S_2$ the resonance frequency f_r is obtained

$$f_{\rm r} \simeq \frac{1}{2\pi} \Biggl[\frac{\partial \, G_1}{\partial n} \frac{S_{10}}{\tau_{\rm ph1}} + \Gamma_1 S_{10} \Gamma_2 S_{20} (2\beta_1 \beta_2 - \theta_{12} \theta_{21}) \Biggr]^{1/2},$$

where S_{10} and S_{20} are steady state values of S_1 and S_2 , respectively. The second term in the bracket contributes to enhancement or diminution of resonance frequency. To obtain high resonance frequency, it is important to achieve

$$2\beta_1\beta_2 - \theta_{12}\theta_{21} > 0.$$

To satisfy this condition, a coupled cavity DFB-LD shown in Fig.1 is proposed. Region 1 has phaseshifted gratings with the grating coupling coefficient κ_1 =40 cm⁻¹, the region length L_1 =300 µm, the corrugation pitch Λ_1 =238.45 nm, and the phaseshift $\Delta\Omega_1 = -\pi$ at the center of Region 1. Region 2 has phase-shifted gratings with the grating coupling coefficient κ_2 =33 cm⁻¹, the region length L_2 =300 µm, the corrugation pitch Λ_2 = Λ_1 – $\Delta\Lambda$, and the phase-shift $\Delta\Omega_2$ = – π at the center of Region 2. Both facets are anti-reflection coated; the power reflectivities R_1 and R_2 are assumed to be zero.

Fig. 1 Analytical model of a coupled cavity DFB-LD with asymmetric grating coupling coefficients. Both facets are anti-reflection coated.

Undoped active layers consist of five 7.5 nmthick $In_{0.557}Ga_{0.443}As_{-82}P_{0.018}$ strained quantum wells (QWs). These QWs are sandwiched by 23 nm-thick $In_{0.738}Ga_{0.262}As_{0.568}P_{0.432}$ barriers. The substrate is nInP with impurity concentration of 10^{18} cm⁻³. The upper cladding layer is p-InP with impurity concentration of 5×10^{17} cm⁻³. The waveguide is 1.5 μ m wide. Region 1 and Region 2 have a common anode and a common cathode.

III. SIMULATED RESULTS

Figure 2 shows the resonance frequency f_r as a function of the grating pitch difference $\Delta\Lambda$ for the injected current I = 20 mA. The resonance frequency f_r has a peak of 53.0 GHz at $\Delta\Lambda$ =1.6 nm. This f_r is 6.9 times as high as f_r =7.68 GHz at $\Delta\Lambda$ =0 nm.

Fig. 2 Resonance frequency f_r as a function of the grating pitch difference $\Delta \Lambda$.

Figure 3 shows the resonance frequency f_r as a function of $I/I_{th}-1$ at $\Delta\Lambda=1.6$ nm where I is the injected current and I_{th} is the threshold current. The resonance frequency f_r increases with $I/I_{th}-1$, and the resonance frequency f_r is 61.3 GHz when $I/I_{th}-1=1.5$. When $I/I_{th}-1$ is larger than 1.5, the stable condition is not satisfied.

Fig.3 Resonance frequency f_r as a function of the relative bias current $I/I_{th}-1$.

Figure 4 shows frequency response for $\Delta \Lambda$ =1.6 nm and I/I_{th} -1=1.5. The resonance peak is clearly observed at the modulation frequency of 61.3GHz. The 3-dB down band width is 82.7 GHz.

Figure 5 shows oscillation spectrum for $\Delta \Lambda = 1.6$ nm and $I/I_{th} = 1.5$. The main-mode oscillates at 1.5244 µm which is Bragg wavelength in Region 1. Slight sub-mode exists at 1.5223µm.

Table 1 summarizes f_r and f_{3dB} with conditions in the references and the present work.

Table 1 f_r and f_{3dB} when $I/I_{th}-1=1.5$.

$\kappa_2 (\text{cm}^{-1})$	$L_2(\mu m)$	$\Delta\Omega_2$	fr (GHz)	f _{3dB} (GHz)	Ref.
40	300	$-\pi$	21.4	31.6	[7]
40	310	0	37.2	53.4	[8]
40	300	-0.9 π	24.3	35.7	[9]
33	300	$-\pi$	61.3	82.7	Pres.

IV. CONCLUSIONS

The coupled cavity DFB-LD with asymmetric grating coupling coefficients was proposed and simulated. For $\Delta\Lambda$ =1.6 nm and I/I_{th} -1=1.5, the resonance frequency and the 3-dB down bandwidth were enhanced from 37.2 GHz to 61.3 GHz and from 53.4 GHz to 82.7 GHz, respectively.

REFERENCES

- D. D. Marcenac, M. C. Nowell, and J. E. Carroll, IEEE Photon.Technol. Lett., vol.11, pp.1309-1311 (1994).
- [2] M. C. Nowell, J. E. Carroll, R. G. S. Plumb, D. D. Marcenac, M. J. Robertson, H. Wickes, and L. M. Zhang, IEEE J. Selected Topics Quantum Electron. vol.1, pp.433-441 (1995).
- [3] J. C. R. Maciejko, and T. Makino, IEEE J. Quantum Electron., vol.32, pp.2156-2165 (1996).
- [4] Junqiu Qi, Yanping Xi, Xun Li, NUSOD 2015, pp.127-128, Taipei, Taiwan (2015).
- [5] H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, IEICE Trans. Electron., vol.E95-C, pp.1549-1551 (2012).
- [6] P. Bardella, W.W. Chow, I. Montrosset, NUSOD 2016, pp.11-12, Sydney, Australia (2016).
- [7] T. Numai, Optik, vol.127, pp. 9578-9581 (2016).
- [8] T. Numai, NUSOD 2017, pp.35-36, Copenhagen, Denmark (2017).
- [9] T. Numai, NUSOD 2018, pp.99-100, Hong Kong, China (2018).