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Abstract—We describe the simulation model that we use to
calculate the impulse response and phase noise in a modified uni-
traveling carrier (MUTC) photodetector using the drift-diffusion
equations while avoiding computationally expensive Monte Carlo
simulations.

Phase noise in photodetectors is a critical limiting factor in
many RF-photonic applications [1]. Quinlan et al. [2] experi-
mentally showed that while there is a significant reduction in
the phase noise as the pulse duration decreases, this decrease in
the phase noise ceases once the optical pulse duration becomes
small compared to the duration of the electrical pulse that
emerges from the photodetector. Sun et al. [3] were able
to reproduce these experimental results using Monte Carlo
simulations. However, they did not take advantage of the fact
that the distribution of electrons in any time slot is expected to
be Poissonian, which simplifies both the calculations and the
physical interpretation of the results. In our approach, we use
the drift-diffusion equations, combined with the observation
that the arrival of electrons in any time interval is Poisson-
distributed, to calculate the phase noise. This approach takes
minutes on a desktop computer, as opposed to the many hours
on a computer cluster that the Monte Carlo approach requires.
The results that we present in Fig. 4 previously appeared in
Jamali et al. [4]. Here, we present previously unpublished
details on our computational approach.

Our starting point is to use the drift-diffusion equations [5]
to calculate electron density n, hole density p, and potential
distribution ψ across the photodetector. Since explicit methods
are intrinsically unstable and require an unreasonably small
time step to yield physical results with the diffusion coef-
ficients, it is important to use a fully implicit method [6]
when discretizing the drift-diffusion equations for numerical
computation. We used the implicit Euler method to discretize
the equations in time t. We used second-order finite differences
to discretize the spatial dimension x. This discretization was
previously described by Hu et al. [5].

Figure 1 shows the numerical mesh that we used for the
finite difference spatial discretization of one-dimensional (1-
D) drift-diffusion equations.

Fig. 1. Numerical mesh used for the finite difference spatial discretization
of the 1-D drift-diffusion equations.

We approximate the electric field at the half-integer points in
the mesh as
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)
, (1)

where ψi is the potential at mesh-point i, and we approximate
∂p/∂x and ∂n/∂x at the half-integer points as
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where hi is distance between the points i−1/2 and i+1/2. We
calculate the currents at the half-integer points by discretizing
the drift-diffusion equations to obtain

Jp,i+1/2 = qpi+1/2vp,i+1/2(E)− qDp,i+1/2

(
pi+1 − pi

hi

)
,

Jn,i+1/2 = qni+1/2vn,i+1/2(E) + qDn,i+1/2

(
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hi

)
,

(3)

where pi+1/2 = (pi+1 + pi)/2, ni+1/2 = (ni+1 + ni)/2,
Dn,i+1/2 and Dp,i+1/2 are the electron and hole diffusion co-
efficients at the point i+ 1/2, and vn,i+1/2(E) and vp,i+1/2(E)
are the electron and hole drift velocities as a function of the
electric field at the point i+ 1/2. Finally, we approximate

∂Jp,i
∂x

=
Jp,i+1/2 − Jp,i−1/2

[(hi + hi−1)/2]
,

∂Jn,i
∂x
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.

(4)

The total output current is the sum of the electron, hole, and
displacement currents and is given by

Jtotal = Jn + Jp + ε
∂E
∂t
. (5)

To calculate the impulse response, we first calculate the
steady state output current. We then perturb the generation
rate by ∆Gopt and calculate the impulse response due to the
perturbed ∆Gopt. We use

∆Gopt = rGopt sech
(
t

τ

)
, (6)

where Gopt is the optical generation rate, r is the perturbation
coefficient, sech(t) is the hyperbolic secant function, t is time,
and τ is the impulse width. We set τ = 10 fs, which we verified
produces reliable results for the impulse response for times that
are larger than 40 fs. We use r = 10−1, which we have verified
is sufficiently small that no nonlinear effects occur, while it is
large enough to avoid roundoff errors. The normalized impulse
response h(t) is then given by

h(t) =
∆Iout(t)∫∞

0
∆Iout(t)dt

, (7)

so that
∫∞
0
h(t)dt = 1, where ∆Iout(t) is the change in the

output current due to the impulse.
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Fig. 2. Output current (Iout) of the MUTC photodetector as a function of
time for different time meshes (∆t).
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Fig. 3. Normalized impulse response of the MUTC photodetector as a
function of time for different values of r.
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Fig. 4. Phase noise of the MUTC photodetector as a function of offset
frequency from the fifth harmonic at 10 GHz for three different optical pulse
widths. Dot-dashed lines are experimental results of Quinlan et al. [2]; solid
lines are Monte Carlo simulation results of Sun et al. [3]; dotted lines are
our simulation results.

We note that h(t) as defined here includes the combined
effect of a finite optical pulse duration and the electrical
response to the optical pulse. This definition is consistent
with Refs. [2] and [3]. In order to verify that our results
are independent of the choice of τ and r, we ran numerical
tests in which we allowed these quantities to vary. In Fig. 2,
we show output current (Iout) of a modified uni-traveling
carrier (MUTC) photodetector [7] as a function of time t for
different time meshes (∆t). The results are almost identical
for t > 20 fs, indicating that the frequency dependence will
be reliable up to frequencies of 50 THz, which is far beyond
the limit of 10–50 GHz at which experiments indicate that
the device can no longer respond. In Fig. 3, we show how

the calculated impulse response varies for the MUTC device
as r varies. When r = 10−4, computational errors degrade the
impulse response, leading to rapid fluctuations. When r = 105,
nonlinearity becomes important, and the impulse response is
distorted. For 10−3 < r < 104, the impulse response is almost
identical to the impulse response when r = 10−1, which we
have shown.

We define h(t) as the response of the photodetector to a
finite-duration optical pulse, as in [2], [3]. Because the arrival
of electrons in any interval ∆t varies from shot-to-shot and
is Poisson-distributed, the number of electrons in that interval
has a variance equal to h(t)Ntot∆t, from which we calculate
the phase noise. We find that when the optical pulse duration
τ is less than about 500 fs, h(t) tends to a finite limit he(t),
which has a duration on the order of 10 ps. In this limit, we
obtain〈

Φ2
m

〉
=

1

Ntot

∫ TR

0
he(t) sin2 [2πm(t− tc)/TR] dt{∫ TR

0
he(t) cos [2πm(t− tc)/TR] dt

}2 , (8)

where
〈
Φ2

m

〉
is the mean-square phase fluctuation, Ntot is

the total number of electrons in the photocurrent, m is the
harmonic number, and tc is the central time of the photocur-
rent. Hence, in the limit of short optical pulse durations, we
find that 〈Φ2

m〉 tends to a non-zero constant. Figure 4 shows
the experimental and calculated phase noise of the MUTC
photodetector as a function of offset frequency from the fifth
harmonic at 10 GHz for three different optical pulse widths.
As Fig. 4 demonstrates, we obtain good agreement with both
experimental and Monte Carlo simulation results.

In conclusion, we used the drift-diffusion equations com-
bined with the observation that the arrival of electrons in
any time interval is Poisson-distributed to calculate the phase
noise in an MUTC photodetector avoiding time-consuming
Monte Carlo simulations. We used the implicit Euler method
to discretize the equations in time t. We used second-order
finite differences to discretize the spatial dimension x. We
obtain good agreement with both experimental and Monte
Carlo simulation results.
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