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Abstract-A novel and flexible method for producing a multichannel 
filter from a single-channel fiber Bragg grating (FBG) is proposed 
and numerically demonstrated. The proposed method enables us to 
produce a multichannel filter from a single channel FBG just by 
using the direct UV exposure without the need of the expense and 
the complex phase mask. Moreover, the proposed method provides 
much more flexibilities to design any other new kinds of fiber 
gratings than ever before. 

 

I.    INTRODUCTION 

In the past decades, multichannel fiber Bragg gratings (FBGs) 
have recently attracted a lot of research interest and found 
versatile applications in the fields of fiber sensing, all-optical 
signal processing, and optical communications [1-6]. To date, 
various sampling functions have been used to produce the 
multichannel FBG, which mainly can be divided into two kinds, 
i.e., the amplitude-only and the phase-only modulations. For the 
first one, one typical example is utilization of a periodic 
rectangular function [1,2], which however will inevitably result 
in a large non-uniformity among channels. For the later one, the 
phase-only sampling method can reduce the index change 
required for the sampled FBG with even an 81-channel to a 
practical level [3-5]. However, the grating’s pitches will be 
changed differently along the fiber direction due to the 
introduction of the phase sampling function. As result, a 
specially-ordered phase-mask with a fringe resolution better 
than several nanometers is generally demanded, which makes 
this kind of phase-masks extremely expensive and has few 
flexibilities to write any other kinds of FBG. In this study, a 
novel and flexible method named the DC-sampling method, is 
firstly proposed and numerically demonstrated. The proposed 
DC-sampling function acts equivalently like the previous 
phase-only sampling, which can be used to produce a 
multichannel FBG and meanwhile make the maximum 
utilization of the fiber as well.  

II.    PRINCIPLE AND OPTIMAL DESIGN FOR THE 

DC-SAMPLING FBG 

The refractive-index distribution ns in a single-channel FBG 
(the seed FBG) can be expressed as   

)/2cos()( 010s gznnzn φΛπΔ ++= ,                 (1)  
 

where z is the position along the grating direction, n0 is the 
effective index of the core, Δn1 is the amplitude of the grating, 
Λ0 is the central pitch, and φg is the local phase of the FBG. For 
simplicity, the linear phase term φg in Eq. (1) can be neglected, 

and the seed FBG is assumed to be a uniform one, thus, the 
AC-part of its index-modulation can be simply described as   
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To produce multiple identical channels from the seed FBG, a 
new function called the DC-sampling one is utilized, which can 
be expressed by  
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where Λp is the period of the DC-sampling function DCnΔ . ⊗  

represents the convolution operation, δ(z) is a Dirac delta 
function and A(z) is a base function within one period of the Λp.  
Here the idea to produce a multichannel FBG is that the seed 
FBG and an additional slowly-varied index-modulation which is 
exactly represented as the DC-sampling function in Eq. (3) are 
superimposed each other in a same length of the fiber, 
meanwhile the condition of that the Λp is much longer than Λ0 is 
satisfied. Therefore, the total index-modulation distribution for 
the proposed multichannel FBG can be expressed by the 
equation of  ACDCM nnzn ΔΔΔ +=)( . As indicated before in Refs. [6, 

7], the slowly varied DC-part index-modulation can be 
equivalent to the differential of the grating’s phase φM, since they 
make the same contribution to the grating’s DC coupling 
coefficient. In another word, the change of the grating’s phase 
φM is then given by     
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where λ is the central wavelength. The index-modulation 
distribution ΔnM(z) in Eq. (4) can be equivalently expressed as 
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Since φM is a periodic function with a period Λp, one can expand 
Eq. (6) in Fourier series as: 
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where Δn1Fn  is the Fourier series. From Eq. (6), it is clearly seen 
that ΔnM(z) consists of an infinite number of the newly obtained 
FBGs (channels) with constant channel spacing (in units of the 
wavenumber domain) 1/ΛP, where each of these gratings has its 
own amplitude Δn1Fn and a pitch Λn=1/(1/Λ0+n/ΛP) in terms of 
the different order number n. The above results are exactly the 
same as those obtained by using the phase-only sampling 
methods [3]. In order to obtain high-channel-count FBG with 
ideal channel uniformity, the phase function φM must be 
optimally selected. For simplicity, the phase function φM(z) is 
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assumed to include a certain number of sinusoid functions with 
frequency n/ΛP  (n=1, 2, 3, …, J), which is given  by  
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where J is the number of the harmonic terms, the minimum 
value of which is determined by the channel number what we 
demand for the multichannel FBG. The free parameters αn and 
θn in (8) need to be optimally selected later. To substitute the Eq. 
(7) into Eq. (5), the index-modulation ΔnM(z) can be rewritten as  
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where the terms αn and θn in (8) are optimally selected such that 
the Fn in Eq. (6) are identical within the desired channels. By 
using the simulated annealing algorithm, optimization for the 
9-channels phase function φM(z) was obtained, which is 
expressed by   
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where W=2πz/ΛP and five harmonic terms are included. 
Distributions of the phase φM(z) within one sampling period and 
the corresponding Fourier series nF  are shown in Figs. 1 (a) 

and (b), respectively. From the Fig. 1 (b), it can be found that the 
in-band energy efficiency is larger than 97%, and the 
non-uniformity through the central 9 channels is less than 0.8%. 
By substituting the Eq. (9) into Eq. (4) and performing the 
differential operation on both sides, the DC-sampling function 
ΔnDC is then obtained as  

 ( ) ( ){

( )}WWW

WWzn
P

DC

5cos855.0)4sin(272.1)3cos(26.1

2sin16.1cos935.2
2

)(

++−

−−=
Λ
λΔ .   (10) 

 

0.0 0.2 0.4 0.6 0.8 1.0
-4

-2

0

2

4
(a)

 

 

P
h

as
e 

 (r
ad

ia
n

)

z  (normalized to Λ
P
)

-6 -4 -2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

(b)

F
ou

ri
er

 s
er

ie
s 

|F
n
|

Fourier order n  
Fig. 1. The optimized 9-channel phase function. (a) the phase function and (b) 
the corresponding Fourier series |Fn|. 
 
Figure 2(a) shows the distribution of the optimized 
DC-sampling function along the grating position, where the 
sampling period ΛP and the grating’s central wavelength λ  are 
particularly adopted as 0.2 cm and 1550 nm, respectively. The 
total length of the grating is chosen as 1 cm. The above results 
indicate that if we can make the DC-part of the induced 
index-modulation in a seed FBG exactly like the one shown in 
Fig. 2(a), then it means that the phase function φM(z) shown in 
Eq. (9) can be equivalently inserted into the seed grating. As a 
result, a 9-channel FBG with an identical channel amplitude and 
spacing is expected to obtain.  

To prove the above conceptual principle, we have calculated 
both the transmission and reflection spectra of the DC-sampled 

9-channel FBG by using the transfer matrix method [7]. The 
results are given in Fig. 2(b), where the period Λ0 and the 
maximum index-modulation Δn1 of the seed grating are 
assumed to be 0.55 μm and 8 10-4, respectively. Period of the 
sampling function and total length of the seed grating are 
assumed to 0.2 mm and 1 cm, respectively, which are the same 
as what we utilized in Fig. 2(a).  From Fig. 2(b), it can be 
obviously seen that there exist nine nearly identical 
channels/notches in the reflection/transmission spectrum and 
each of them has a strong depth larger than 18 dB in 
transmission. In addition, the channel spacing is 0.42 nm. All the 
above results are exactly the same as those obtained by directly 
inserting the phase-sampling function into the Eq. (5), which in 
return means that the proposed DC-sampling method acts 
exactly like an equivalent phase-only sampling function.   
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Fig. 2.  (a) The optimized DC-sampling function for 9-channel FBG. (b) 
The calculated spectra for the DC-sampling 9-channel FBG. 
 

III.    CONCLUSIONS 

A novel DC-sampling method enabling to produce a 
multichannel FBG is firstly proposed and numerically 
demonstrated. The proposed method would provide us much 
more flexibilities to fabricate any other new kinds of fiber 
gratings than ever before. 
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