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Abstract—We describe the propagation of nonlinear pulses in
dispersive optical media on base of our generalized approach [1].
It is known, that intense pulses, such as solitons, can mimic event
horizons for smaller optical waves. We prove that such strong
pulses can be dramatically influenced in the course of nonlinear
interaction with the proper dispersive waves. Moreover, it will be
demonstrated, both numerically and more efficiently by a new
analytic theory [2], that small optical waves can be used to control
such solitons [3], [4]. In particular, the typical pulse degradation
caused by Raman-scattering can be completely compensated by
these means [4], which is supported by recent experiments [5].

I. INTRODUCTION

Optical data transmission at high bitrates along fibers
requires (ultra-) short pulses that propagate in a stable manner
to establish faultless transfer of information. These pulses
inevitably suffer from various detrimental effects during prop-
agation, such as fiber dispersion, losses, and nonlinearity, to
name the fundamental effects amongst them. If fiber dispersion
and nonlinearity compensate we talk about solitons, which
are stably propagating intense pulses. This can be analytically
described by the integrable nonlinear Schrödinger equation
(NLSE) [6]. In the case of short pulses with wide spectra,
additional effects, such as higher-order dispersion and Raman-
scattering become increasingly important, which cannot be
compensated in simple ways, if at all. In modeling the propa-
gation of nonlinear pulses, these higher order effects have to
be taken into account by generalized nonlinear Schrödinger
equations (GNLSE) [1], [7], or by various short pulse equa-
tions (SPE) [8]. The latter are designed to describe non-
envelope pulses and directly calculate their electric field. To
some surprise, many SPE’s have proven to be integrable [9].

The most general form of propagation equation for an
optical pulse envelope ψ(z,τ) where z is measured along the
fiber and the delay τ = t− z/vg is the following:
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It includes general dispersion by the operator D̂ [i∂τ ], Kerr-
nonlinearity (coefficient γ), and self-steepening, involved by
the τ-derivative of the last term, as well as Raman scattering,
described by the Raman response function R(τ ′) in the last
term. Note, that this equation is nonlocal in time in general,
which reflects the delayed response of the medium and causal-
ity in a natural way. As a consequence, special algorithms are
required for its numerical solution [10]. We will present both
numerical calculations and theory based on Eq. (1).

II. PULSE INTERACTION

An optical pulse that propagates along a fiber with Kerr
nonlinearity, creates a localized nonlinear perturbation δn of
the refractive index. For instance, a 3-cycle (half-maximum)
soliton in fused silica at 1.55 µm provides δn ≈ 10−4. A co-
propagating pump pulse would usually pass the perturbation
unchanged, under favorable conditions it is scattered how-
ever [11]. A suitable group velocity matched pump wave may
even be perfectly reflected, thereby undergoing a pronounced
frequency change [12]. The reflected wave propagates in the
same direction as the soliton but with a different velocity due
to frequency shift, as schematically shown in Fig. 1.
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Fig. 1. A fiber soliton (red) and a dispersive wave (DW) packet (dark blue)
effectively interact with each other if they co-propagate with only slightly
different velocities. This is shown by the group velocity dispersion profile on
the right. A new frequency-shifted DW (light blue) appears after reflection,
its spectral position is given by the resonances (cross of red soliton line with
the black dispersion curve) on the left. Interestingly, there is an additional
resonance (green) for the forward wave at a negative frequency.

A frequency down-shift ωi 7→ ωo of the scattered wave in-
dicates an energy exchange: the pump feeds the soliton, which
increases in peak power and also experiences a frequency shift
ωs 7→ωs+ν . Thus, a soliton can be manipulated by a carefully
chosen pump wave, e.g., by a low-amplitude group-velocity
matched continuous dispersive wave (DW). For instance, the
soliton can be switched on and off [11], trapped [13], and even
used to mimic event horizons [14].
We present an analytic theory [2] of interactions like the one
schematically shown in Fig. 1. This theory results in a coupled
set of ordinary differential equations for soliton parameters
and thereby reduces dramatically the effort compared to the
numerical solution of the partial differential equation (1).
Moreover, our theory allows even qualitative understanding of
this interaction in simple terms, it allows to quantify optimal
pulse parameters [3], and even to estimate the stability of the
chosen control schemes.

III. RESULTS

Under suitable conditions solitons can mimic event hori-
zons for dispersive waves by total reflection [14]. In the course
of the mutual nonlinear interaction, the soliton is remarkably
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affected by the (nonlinear) interaction with the much smaller
dispersive wave. In consequence the soliton trajectory changes,
together with its spectrum, such that it can become transparent
later. This behaviour strongly supports the idea of using
dispersive waves for control of soliton trajectories and shapes.

We will further show, that the inclusion of the self-
steepening term in Eq. (1) is crucial for the description of this
interaction, because it counts properly for the mutual cross-
phase modulation [15].
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Fig. 2. Soliton, suffering Raman SSFS during propagation. Left: Evolution
of the spectral power of the soliton, showing the red shift. Right: Evolution
of characteristic soliton parameters. Top: temporal width (increases). Middle:
peak power (decreases), as well as the energy (bottom). See [4] for details.

Furthermore, our theory nicely reproduces former results
on Raman scattering [16], expressed even in simpler terms
[4], see Fig. 2. We further demonstrate, that the interaction
of solitons with DW’s under conditions close to optical event
horizons can be used to counteract the Raman effect, see Fig. 3.
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Fig. 3. (Unstable) compensation of SSFS by a DW, scatterd at a soliton.
Left: Space-time trajectory, showing stabilization up to 60 cm propagation
along the fiber. Right: Spectral evolution of the soliton, with according initial
compensation of SSFS. See [4] and [15] for details.
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Fig. 4. Compensation of SSFS by a DW, approaching from the left. Top left:
space-time trajectories. Top right: Evolution of soliton peak power, which is
almost unchanged. Bottom: Spectral evolution of the soliton (left), and of the
DW (right), which are locked now, c.f. Fig. 1. See [4], [15] for details.

On top of that, we demonstrate, how the interaction of
solitons with DW’s under conditions close to optical event
horizons can be used to completely compensate the SSFS
(Fig. 4). In this way, soliton trajectories can be completely
stabilized [4]. Recently, there was an experimental verification
that such effects really can take place, reported in [5]. In
conclusion, a new method to manipulate optical pulses is
presented. The method has been proven both numerically and
experimentally.
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