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Abstract—For the realization of integrated optical waveguide
components, needed for integrated photonic circuits, a promising
approach to manufacturing is their embedding in thin glass
sheets by thermal diffusion processes. Because prototyping or
manufacturing small batch series is costly, appropriate numerical
simulations are used in order to allow an accurate characteriza-
tion. However, in practical applications it is often more interesting
to estimate the parameters of the manufacturing process based on
specific features of the components. In this work, an estimation
approach for these parameters is proposed and evaluated.

I. INTRODUCTION

For manufacturing integrated waveguide components by
diffusion, a metallic mask is grown on the substrate material.
The immersion in an ionic salt melt results in a characteristic
change of silver ion concentration in the areas of the mask
opening and, thus, an altered refractive index [1]. With a
given set of process parameters the ion-exchange process can
be accurately modeled by Fick’s law. Although semi-analytic
modeling approaches help with the forward simulation [2], [3],
three-dimensional simulations remain both resource and time
intensive. However, practical applications more often require
the estimation of the parameters of the manufacturing based
on specifically desired features.

The forward simulation provides a fundamental understand-
ing of the manufacturing process and the influence of the
according process parameters [3], [4]. Any specifically defined
feature, e.g. geometrical or optical, can be derived from
simulation results.
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Fig. 1. With a chosen set of process parameters the multivariate design space
is mapped onto the co-domain, the concentration profile. The characterization
of the profile itself yields the relevant features.
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Fig. 2. Exemplary concentration profile and the defined features for the
purpose of parameter estimation, which are maximum concentration cmax,
diffusion depth at cmax as well as height and width of the profile.

II. FEATURE EXTRACTION AND PARAMETER
COMPRESSION

Specific component features result from the requirements of
the application. The necessity to ensure that all requirements
are met introduces difficulties because the design space of
the diffusion process is too large to find the right parame-
ter combination by sweeping through a sufficient and rep-
resentative number of combinations. Therefore, an accurate
estimation of the appropriate process parameters is essential.
Figure 1 depicts the multivariate design space. A chosen set of
process parameters yields the according concentration profile
from which relevant features can be derived. This leads to a
fundamental problem because the non-linear saturation effects
of the diffusion process create ambiguities in feature char-
acterization. In other words, the mapping from design space
onto the co-domain is not bijective and multiple combinations
of process parameters can and do result in matching features.
The features used for the purpose of parameter extraction are
shown in Figure 2. The profile is therefore characterized by
its maximum concentration cmax, the diffusion depth at cmax
as well as by its height and width. Furthermore, the process
parameters of the diffusion process are the initial concentration
of silver ions in the salt melt c0, diffusion times tin, tout and
the mask width w.

The basis for the estimation is the determination of the
dependencies between waveguide features and process param-
eters, which can be done with a small, limited number of sim-
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ulations. In general, these dependencies are ambiguous and,
therefore, a single feature is not sufficient for the estimation
of all parameters. The feature extraction results in a four-
dimensional matrix per feature. In the first step, two process
parameters are selected as primary - in this case the diffusion
times tin and tout, which were chosen because their combina-
tion is the most ambiguous [5]. Then, the feature matrices are
fit over these primary parameters, which is equivalent to an
interpolation. The dependencies can be accurately represented
by a polynomial fit. This simplicity is beneficial. Furthermore,
the resulting coefficients of the polynomial fit can be fitted
again over the remaining two secondary process parameters
c0 and w. This has one essential benefit, since the estimation
model is no longer depending on the number of supporting
points of the initial simulation. This double-fit approximation
can be interpreted as a parameter compression. Each feature
is now represented by only a small number of coefficients.

III. PARAMETER ESTIMATION

The estimation of the process parameters is done by eval-
uating the compressed model reversely. The four-dimensional
feature dependencies are generated with the function of the
fits and the according coefficients of the compressed double-fit
model. At this point, a testing set of known or desired feature
values is provided. For each feature and all combinations of
secondary process parameters a deviation σp is calculated as
a function of the primary process parameters, which describes
a difference between generated feature value and testing set.
Further, this deviation is used to compute a pseudo probability
measure pp:

pp(tin, tout) =
1√

2π σp(tin, tout)
e
− 1

2

(
1

σp(tin,tout)

)2

(1)

Hence, the more the modeled feature value and the value of
the testing set diverge the higher the deviation σp becomes
resulting in a smaller probability for this particular combina-
tion of process parameters. When the probabilities for each
feature and all combinations of secondary process parameters
are calculated they are normalized and superposed. By the
means of this superposition of feature probabilities the most
probable combination of primary process parameters is found.

Figure 3 shows the distribution of the pseudo probability
measure for a testing set of feature values. As can be seen,
a maximum probability of 82.68% occurs at the correct cor-
responding combinations of process parameters. The marked
artifacts only occur in the immediate neighborhood of the max-
imum and are caused due to parameter compression by fitting.
Benchmarks of the estimation show that the correct combina-
tions of process parameters are identified unambiguously with
a probability of over 80% for both, the original supporting
points of the forward simulation and the interpolated ones
of the double-fit approximation. Interestingly, this estimation
approach identifies all primary and also all secondary process
parameters correctly by only evaluating a probability measure
for the primary process parameters tin and tout, which is not
self-evident. This is because of the way the features relate
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Fig. 3. Pseudo probability measure pp depending on all primary and
secondary process parameters tin, tout, w and c0. Numerical compression
artifacts are marked.

to the process parameters. The only nonlinearity in these
relations is the saturation effect of the maximum concentration.
Additionally, the type of visualization in Figure 3 also reveals
different clusters of potential solutions if similarly probable.
If an unambiguous identification is not possible, the combi-
nations of primary and secondary process parameters can be
permuted in order to evaluate additional, possibly different
relations for a distinct identification without having to extend
the scope of the forward simulation.

IV. CONCLUSION

The estimation of the process parameters of the thermal
ion-exchange process yields excellent results with respect to
the unambiguous estimation of primary and secondary process
parameters. The relations between characterized features of
the concentration profile and the primary process parameters
greatly benefit the simplification of the estimation process.
Furthermore, the implications of these results open up an
additional approach. If certain process parameters are fixed
due to specific hardware of other external specifications the
subspace of remaining parameters can be estimated in order
to find an optimal solution.
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