

nanoPhotonic Integrated Circuit (nPIC) Electro-optic Dendrimer based Terahertz Waveguide

Anis Rahman, Ph.D. Applied Research & Photonics, Inc.

470 Friendship Road, Suite 10, Harrisburg, PA 17111 http://arphotonics.net/

7th International Conference Numerical Simulation of Optoelectronic Devices 24–27 Sept. 2007 University of Delaware, Newark, DE 19716

Plan

- Introduction/Company
- Dendrimer
- Terahertz generation/Electro-optic Route
- Modeling, Simulation, Data
- Other photonic components
- Concluding Remarks

NanoPhotonics

- An opportunity to create smart devices by combining <u>nanotechnology</u> and <u>photonics</u>
- 1880 Bell: Photophonic transmitter
- 1905 Einstein: measured sugar molecule size ~ 1 nm
- 1985 Tomalia: Dendrimer

➤a polymeric nanomaterial

>allows to combine the power of nanotechnology and photonics

>can result in a number of important applications

Dendrimer

A polymeric nanomaterial

- 3-D, core-shell molecule Generation: G0-G11
 Size: 4-12nm
- Multiple functionality: terahertz waveguide, modulator, amplifier, and band gap
- Established route for transition to production
- Cost-effective

Multifunctional dendrimer molecule

Multivalent dendrimer

- No. of end groups: $2^{(G+2)}$, G = 0 to 11
- G3 PAMAM dendrimer: $2^5 = 32$ groups
- each molecule can accept up to 64 dopant molecules
- Potentially 64 fold increase of $\chi^{(2)}$ for G3
- Higher for higher generation
- High field poling required
- There are many chromophore to choose from

 $\chi^{(2)} = nF\beta(\cos^3\theta)$

Optical properties

Variation of refractive index of cured dendrimer film compositions by natural index contrast (NIC) method

FTIR spectra of dendrimer film exhibits high transmission over the NIR region.

Dendrimer film's RI can be controlled by its generation, doping, and process parameters

Terahertz waveguide

- EO rectification
- waveguide
- Photoconductor
- Reactor/Accelerator

 $E_{THz,max} \propto \chi^{(2)} E_{pump}^2$

Principle of THz generation in a waveguide

- Terahertz power is proportional to the electro-optic coefficient and to the square of input pump power.
- EO rectification in waveguide is scalable, not limited by heat dissipation or emission saturation:

$$W_{THz} = f(W_{\rm p}, r_{33}, I_{eff}, A)$$

 w_p : pump power, r_{33} : EO coefficient I_{eff} : effective intensity, A: # of waveguide in array

THz power scaling as a function of pump power in GaP: approx. quadratic. Ref. Chang, et al., O*P. EX.*, **14**, 7909, (2006)

EO Properties: poling

Sketch of dipole orientation in (a) unpoled and (b) corona poled dendrimer film.

(a) Poling I-V, and (b) decay of poling current in dendrimer film.

(C) 2007 Applied Research & Photonics - Proprietary - Anis Rahman - NUSOD 07

EO measurements

Poled dendrimer film exhibit excellent linear relationship between modulated-beam signal, Vac and applied voltage Vpp

Refractive Index & EOC

Pockels effect

- Refractive index difference between poled and unpoled dendrimer (Metricon 2010).
- →Dendrimer is suitable for terahertz generation

(C) 2007 Applied Research & Photonics - Proprietary - Anis Rahman - NUSOD 07

High power terahertz generation

Red circles: data from Chang, et al., *OPTICS EXPRESS*, 14, 7909, (2006) Yellow circles: Dendrimer: ~100 times higher power

Simulation of terahertz power from dendrimer waveguide array

(C) 2007 Applied Research & Photonics - Proprietary - Anis Rahman - NUSOD 07

Terahertz Spectrum Simulation

Typical terahertz pulse and spectrum (simulation):

(a) A typical terahertz pulse, (b) normalized terahertz spectrum of the pulse shown in (a). (c) and (e): pulses with width 100 fs and 690 fs, respect., at 80 MHz.

(d) and (f): terahertz spectra for (c) & (e).

20T

(b)

(d)

16T

(f)

16T

-20

-50

20T

Design & Simulation

Waveguide: Core Technology

Dendrimer based waveguide design and simulation.

From left: half-core, field intensity, design (top right) and field intensity in an array of waveguide.

Functionality is determined by the core layer

(C) 2007 Applied Research & Photonics - Proprietary - Anis Rahman - NUSOD 07

Photonic components

Demonstration of photonic components from dendrimer Fabricated at Penn State University Nanofab Facility

Waveguide Array

Left: Photomicrograph of an array of waveguide from dendrimer. Right: SEM micrograph showing the ridges that forms the core of waveguide.

Optical amplifier

section

Pump Power (mW)

Simulation of erbium doped dendrimer waveguide amplification

Arrayed Waveguide Grating

A 48 channel TAWG and its spectral response designed from dendrimer

RAWG

A 16 channel RAWG and its spectral response.

Modulator

- Here the waveguide core is made from EO dendrimer
- Electrodes are added to drive the modulator
- Basic element for sensing

nPIC

Depending on the configuration

- Optical communication node
- Multi-channel sensor network

Summary

- Dendrimer is a workhorse matl. for photonics.
- Electro-optic rectification is not limited by THz emission saturation or by heat dissipation
 → power scalability.
- > 100 mW per chip can be generated from EO dendrimer waveguide array.
- Applications in molecular spectroscopy, diagnosis, security, screening, ...
- Active and passive photonic components can be integrated via monolithic fabrication
- Opportunities for collaboration.