Peter Nyakas: Three-Dimensional VCSEL Simulation Using Vector Finite Elements

Motivation: only mode expansion methods had been used successfully for real 3-D optical simulation of VCSELs.

- coupled mode theory
- plane-wave admittance method

Finite Element Method has been realized for the first time for polarization-resolved simulation of arbitrary VCSELs (noncircular mesas, photonic crystal patterns).

$$F(\mathbf{E}) = \frac{1}{2} \int_{V} \left[(\nabla \times \mathbf{E}) \mathbf{\Lambda}^{-1} (\nabla \times \mathbf{E}) - \frac{\omega^{2}}{c^{2}} \mathbf{E} \varepsilon_{r} \mathbf{\Lambda} \mathbf{E} \right] dV$$

TuP11

prism elements

Peter Nyakas: Three-Dimensional VCSEL Simulation Using Vector Finite Elements

Selected Results:

- wide-angle diffraction around elliptical oxide aperture
 - electric field components forelliptical aperture VCSEL
 - simulation of photonic crystal and oxide aperture

TuP11