Time-domain simulation of semiconductor laser light with correlated amplitude and phase noise

Daniel Lasaosa, Martín Vega-Leal, Carlos Fañanas Universidad Pública de Navarra, Pamplona, SPAIN

Outline

- Motivation
- •Physical principle
- •Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

- Motivation
- •Physical principle
- •Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

Motivation

Frequency domain analysis is sufficient for LTI systems

$$X(f)|^{2} \longrightarrow H(f) \longrightarrow |H(f)X(f)|^{2}$$

Increasing number of applications combine LTI and non-LTI subsystems

Correct system evaluation needs time-domain noise characterization

- Motivation
- •Physical principle
- Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

Noise Origin in Semiconductor Lasers

All processes are the sum of individual uncorrelated events

Noise is similar to white noise "colored" by the laser response

The lasing frequency depends on N through reffractive index

Photon output adds partition noise

Spontaneously emitted photons add random phase

Rate Equations and Langevin Picture

Langevin noise sources F_N and F_P represent randomness in the generation/loss processes (poissonian characteristics)

Effect of noise sources is analogous to substitution of rates with Poisson-distributed variables

- Motivation
- •Physical principle
- •Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

Computation of carrier and photon evolution

Approximation of evolution by numerically solving density rate equations as difference equations

$$N(t + \Delta t) = N(t) + x_I(t) - x_{nr}(t) - x_{sp}(t) - x_{21}(t) + x_{12}(t)$$

$$N_{p}\left(t+\Delta t\right) = N_{p}\left(t\right) + \Gamma x_{21}\left(t\right) - \Gamma x_{12}\left(t\right) + \Gamma \beta_{sp} x_{sp}\left(t\right) - x_{o1}\left(t\right) - x_{o2}\left(t\right) - x_{l}\left(t\right)$$

Instantaneous output power may be calculated using $P_{\text{out}}(t) = \frac{E_{ph} x_{o1}(t) V_{p}}{\Delta t}$

Allows the computation of instantaneous carrier and photon densities Partition noise taken into account

Simulation Algorithm

Self-consistent solution to rate equations provides equilibrium point for given output power $(N_0, N_{p,0})$

Phase noise due to spontaneous emission noise is added as random variable with gaussian probability distribution

$$\Delta f(t) = \frac{\alpha}{4\pi} \Gamma v_g a \left(N(t) - N_0 \right) + x_{\phi}(t)$$

- Motivation
- •Physical principle
- Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

Evolution of Output Power and Frequency

Visible correlation between amplitude and phase noise Optical power variations trail frequency variations by about $\pi/2$

Autocorrelations

Partition noise makes the output power fluctuations autocorrelation "noisier"

- Motivation
- •Physical principle
- •Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

RIN Spectra

Good agreement between computed results and previously exising theoretical results

Frequency Noise Spectra

Good agreement between computed results and previously exising theoretical results

- Motivation
- •Physical principle
- •Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

RIN Reduction

Future work: check with existing theory (Vahala & Newkirk)

Noise in Short Pulses

Future work: Evaluate critical parameters and reduce noise

- Motivation
- •Physical principle
- •Simulation algorithm
- •Time-domain results
- •Noise spectra
- Applications
- Conclusions

Conclusions

- Time-domain algorithm that computes laser noise based on physical principle of operation
- Correlation ensured by use of coupled density-rate equations
- "Natural" introduction of partition noise artificial introduction of spontaneous emission effect on phase noise
- Results match predictions from existing frequency-domain models
- Possible application to systems combining both LTI and non-LTI components

