
W e ie rstra ß -In stitu t fü r A n g e w a n d te  A n a ly s is  u n d  S to c h a stik

K. Gärtner
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Aims, Outline

Aim: establish the essential qualitative properties of the
analytic problem for a discrete version for some classes of grids
independent of h and τ , hence unconditionally stable schemes
for arbitrary parameter dependencies.

-uniqueness of the equilibrium
-dissipativity
-bounds for steady state solutions

Outline
- Introduction
-Delaunay grids, discretization
-Bounds by weak discrete maximum principle
-Example X-ray-CCD (candidate LCLS-detector)
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Warm up: Van Roosbroeck’s Equations

−∇ · ε∇w = C − n + p, (1)

∂n

∂t
+∇ · µnn∇φn = R, (2)

∂p

∂t
−∇ · µpp∇φp = R, (3)

in S × Ω, S = (0, T ),
Ω ⊂ IRN, 2 ≤ N ≤ 3, a bounded polyhedral domain,
∂Ω = ΓD ∪ ΓN, ΓD closed, positive surface measure.
Boundary conditions:
hom. Neumann on insulating parts,
Dirichlet on Ohmic contacts,
and gates: hom./inhom. Neumann φ/w
(∂w/∂~ν + α(w − wΓ) = 0, ~ν outer normal vector).
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Van Roosbroeck’s Equations

The physical meaning of the quantities is :

• φn = w − log n - quasi-Fermi potential n,
• φp = w + log p - quasi-Fermi potential p,
• n = ew−φn - electron density,
• p = eφp−w - hole density,
• w - electrostatic potential,
• ε - dielectric permittivity,
• C - density of impurities,
• R - recombination / generation rate R = r(x, n, p)(1−np),
• µn,p - carrier mobilities µn,p > 0, Einstein relation.

Scaling of the potentials: UT , ’temperature voltage’, 1V ≈ 40UT .
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Van Roosbroeck’s Equations

Rewriting yields:

∂n

∂t
−∇ · µn(∇n− n∇w) = R, (4)

∂p

∂t
−∇ · µp(∇p + p∇w) = R, (5)

or
∂n

∂t
−∇ · µne

w∇e−φn = R, (6)

∂p

∂t
−∇ · µpe

−w∇eφp = R, (7)

(e−φn, eφp Slotboom variables).
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Delaunay grids, notations

N-dimensional simplices EN
l such that

Ω = ∪iΩi = ∪lE
N
l

l simplex index, with positive volume in a right–handed coordi-
nate system.
The N ×N matrix of the vertex coordinates represents the sim-
plex in a local per simplex coordinate system:

P =


x1,1 − x1,N+1 . . . x1,N − x1,N+1

x2,1 − x2,N+1 . . . x2,N − x2,N+1

. . . . .
xN,1 − x2,N+1 . . . xN,N − xN,N+1

 .

xT
i = (x1,i, x2,i, . . . , xN,i) is the vector of the space coordinates of

the vertex i of the simplex.
Edges (simplices with N = 1) are denoted by eij = xj − xi. The
simplex EN−1

i is the ’surface’ opposite to vertex i of the simplex
EN.
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Delaunay grids, definitions

A discretization by simplices EN
i is called a Delaunay grid

if the balls defined by the N +1 vertices of EN
i ∀ i do not contain

any vertex xk, xk ∈ EN
j , xk 6∈ EN

i .

Boundary conforming Delaunay grid:
the circum center of any EN

l ∈ Ωi is in Ω̄i.

Let Vi = {x ∈ IRN : ‖x− xi‖ < ‖x− xj‖,∀ vertices xj ∈ Ω}
and ∂Vi = V̄i \ Vi. Vi is the Voronoi volume of vertex i and ∂Vi is
the corresponding Voronoi surface.
The Voronoi volume element Vij of the vertex i with respect to
the simplex EN

j is the intersection of the simplex EN
j and the

Voronoi volume Vi of vertex i.
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Delaunay grids

Example:

1 2

3

S12

1

2

3

4

Ct

A triangle E2 and a tetrahedron E3 and the related Voronoi
faces.

ξ1u + ξ2∂u/∂ν + ξ3 = 0
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Finite volume scheme

−∇ · ε∇u = f,

ε(x) = εl, x ∈ Ωl, ∇u|∂Vi,k(i)
≈ (uk(i) − ui)/|eik(i)|∫

Vij

−∇ · εl∇u dV = −εl

∑
k(i)

∫
∂Vi,k(i)

∇u · dSk

≈ −εl

∑
k

∂Vi,k(i)

|ei,k(i)|
(uk − ui) + BI

= εl[γk(i)]G̃N(1,−1)u|EN
j

+ BI. (8)

Summation over all nodes in the simplex j:∑
Vij∈EN

j

∫
Vij

−∇ · ε∇udV ≈ εG̃T [γ]G̃u|EN
j

+ BI. (9)

BI :=

∫
EN−1

j ∩Vi

−ε∇u · dS ≈ |EN−1
j ∩ Vi|

ε

ξ2j

(ξ1j
ui + ξ3j

).
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Finite volume scheme

∫
Vij

fdV ≈ Vijf (xi), [V ]i =
∑

j

Vij,

where [·] denotes a diagonal matrix and

G̃2 =

 0 1 −1

−1 0 1

1 −1 0

 , G̃3 =



1 −1 0 0

0 1 −1 0

−1 0 1 0

−1 0 0 1

0 −1 0 1

0 0 −1 1


, · · · ,

the difference matrix along all edges, hence a mapping form
nodes to edges.

G̃T [γ]G̃ =

 0 −1 1
1 0 −1
−1 1 0

  0 γ1 −γ1
−γ2 0 γ2
γ3 −γ3 0

 =

 γ2 + γ3 −γ3 −γ2
−γ3 γ1 + γ3 −γ1
−γ2 −γ1 γ1 + γ2

 .
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Finite volume scheme

(G̃T G̃)ii > 0, (G̃T G̃)i>j < 0, and 1T G̃T = 0T . (10)

If the grid is connected,

A(ε) :=
∑
El∈Ω

εlG
T [γl]G

is irreducible, weakly diagonally dominant, hence a bounded
inverse exists with 0 ≤ A−1 < ∞, because

γk(i) =
∂Vi,k(i)

|ei,k(i)|
,

∑
EN

j 3eik,EN
j ∈Ωi

∂Vik ≥ 0. (11)

due to the requirement ’boundary conforming Delaunay grid’.
Similar to integration by parts test functions can be introduced
and a ’weak discrete maximum principle’ holds.
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Finite volume scheme

Price to pay:
uT |EN

j
GTGu|EN

j

does not introduce a discrete gradient seminorm on one simplex
only. A way out for parameter evaluation is

||∇u||2|EN
j

:= |EN
j |uT |EN

j
P−T

j P−1
j u|EN

j
,

the finite element gradient seminorm.
For any average one requires

ε̄eik
=

∑
EN

j 3eik,EN
j ∈Ωi

χ(ε(x, u, |∇u|)),

∑
EN

j 3eik,EN
j ∈Ωi

ε̄eik
∂Vik ≥ 0.
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Scharfetter-Gummel-scheme

The discrete problem reads:

GTεGw = [V ]g(C,n,p), g = C− n + p, n = [ew]u, p = [e−w]v, (12)

ASn(µn,w)e−φn = GT [µ̄ne
w̄/sh(G̃w/2)]Gu = [V ][r(x,n,p)](1− [v]u),

(13)

ASp(µp,−w)eφp = GT [µ̄pe
−w̄/sh(G̃w/2)]Gv = [V ][r(x,n,p)](1− [u]v).

(14)
Slotboom variables u := e−φn, v := eφp,
µ̄ew(e−φn)′ = const with
w̄ := (wi + wk(i))/2, sh(s) := sinh(s)/s, sh(s) = sh(−s) ≥ 1,
b(2s) = e−s/sh(s) = 2s/(e−2s − 1).
Further details and dissipativity see Gajewski,Gä, ZAMM 1996.

NUSOD, Newark, Sept. 26, 2007 13



Boundary conditions

On insulating boundary parts the normal derivatives of the
quasi-Fermi-potentials vanish ∂φk/∂ν = 0 (k = n, p, ν outer nor-
mal).
The boundary conditions at Ohmic contacts are (due to charge
neutrality, infinite recombination velocity, and infinite conduc-
tivity of a metallic contact)

w|ΓDk
= wk + wb,k, − ewb,k + e−wb,k = −C|ΓDk

, u|ΓDk
= e−φn,k, v|ΓDk

= eφp,k,

(15)
where wk = φn,k = φp,k is the ’applied potential’, while wb,k is the
’built-in voltage’.
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Bounds w

Assume
ǔ ≤ u0

i ≤ û, v̌ ≤ v0
i ≤ v̂ ∀ xi ∈ Ω̄. (16)

The right hand side of the discrete Poisson equation gi(Ci, ni, pi)
is with respect to wi a monotone mapping of IR onto IR ∀i.
Let Č = min(C(x)) and Ĉ = max(C(x)) denote the minimum and
maximum of the doping concentration. Hence the solution w̆i

of g(w̆i) = 0 at any vertex xi ∈ Ω fulfills the bounds

ew̌ :=
Č

2û
+

√
Č2

4û2
+

v̌

û
≤ ew̆i ≤ Ĉ

2ǔ
+

√
Ĉ2

4ǔ2
+

v̂

ǔ
=: eŵ.
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Bounds w

Proposition 1The discrete electrostatic potential w0 unique
solution of (12), with w replaced by w0, u, v by u0, v0, and
fulfilled (16) can be estimated by

ẁ := min(w|ΓD
, w̌) ≤ w0

i ≤ max(w|ΓD
, ŵ) =: ẃ. (17)

PROOF: Suppose w0
j > ẃ. Testing (12) with the positive part

(w0 − ẃ)+ yields

(w0 − ẃ)+TGTεGw0 − (w0 − ẃ)+T [V ]g(C,w0,u0,v0) = 0.

signG(w0 − ẃ)+ = signGw0 if G(w0 − ẃ)+ 6= 0, g(Ĉ, ŵ, ǔ, v̂) = 0,
hence (w0 − ẃ)+TGTεGw0 > 0 and (w0 − ẃ)+T [V ]g(C,w0,u0,v0) ≤ 0
holds, this is a contradiction.
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Bounds w

The mapping with respect w0 is continuous, differentiable, and
bounded and maps the convex domain ẁ ≤ w0

i ≤ ẃ onto itself.
The linear problem with g = 0 has a unique solution (GTεG is
weakly diagonally dominant) and embedding with respect to g
does not change the degree, uniqueness follows directly from
maximum principle: let w0

1, w0
2 to be solutions of (12), assume

(w0
1 −w0

2)
+ > 0 for at least one xi ∈ Ω, testing

(w0
1 −w0

2)
+TGTεG(w0

1 −w0
2)− (w0

1 −w0
2)

+T [V ](g(w0
1)− g(w0

2)) = 0,

and using the monotonicity of g with respect to wi yields a
contradiction. �
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Bounds u, v

Proposition 2Let w1 be a solution of

GTεGw1 = [V ]g(C,w1,u0,v0), (18)

where u0, v0 respect the bounds (16) and suppose u1, v1 to be
solutions of the decoupled continuity equations

AS(µn,w
1)u1 = [V ]r(x, ew1

u0, e−w1
v0)(1− [v0]u1), (19)

AS(µp,−w1)v1 = [V ]r(x, ew1
u0, e−w1

v0)(1− [u0]v1). (20)

Assume for some sufficiently large w+,
max(w|ΓD

)−min(w|ΓD
) ≤ w+ < ∞, that

e−w+ ≤ u, v ≤ ew+
,

∀i is true. Then ew−, ew+
is an lower, upper solution for equations

(13, 14).
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Bounds u, v

PROOF: Assuming u1 > ew+
for at least one xi ∈ Ω and testing

(19) with (u1 − ew+
)+T yields (u1 − ew+

)+TAS(µn,w
1)u1 > 0 inde-

pendently of µn, w1. On the other hand (1 − [v0]ew+
) ≤ 0, and

[r(x, ew1
u0, e−w1

v0)] > 0 holds, hence u ≤ ew+
follows, and so do

the other bounds. �
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Bounds u, v

Remark 1Choosing in (16) ǔ, û, v̌, v̂ accordingly u = v = e−w+
,

u = v = ew+
yields

u ≤ u ≤ u, (21)

v ≤ v ≤ v, (22)

and with (17)

w = min(w|ΓD
, ln((Č +

√
Č2 + 4)/2)− w+) ≤ w (23)

w ≤ max(w|ΓD
, ln((Ĉ +

√
Ĉ2 + 4)/2) + w+) = w.

These are the final bounds because Proposition 2 is true with
(21,22,23), too.
The bounds are identical with the analytic ones.
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Uniqueness if |w+| small

Linearization ...

further results and details see WIAS-Preprint
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Summary

The summary of the results is:
Theorem 1On any connected, boundary conforming Delau-
nay grid with n vertices, the problem (12,13,14) with positive
Dirichlet boundary measure has at least one solution fulfilling
the bounds (21, 22, 23).

PROOF: The established bounds form a convex set in IR3n

and the two step mapping (proposition 1, 19, 20) is continu-
ous, differentiable, and maps the convex set onto itself, hence
Brouwer’s fixed point theorem guarantees the existence of at
least one fixed point. �
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Example

X-ray CCD (a possible detector for the Stanford LCLS (Linac
Coherent Light Source)):

Doping (’equilibrium potential’)
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Example

Time dependent paricle numbers in different regions (shifting
R2 → R3, 80ns wait, R3 → R2, 620ns wait, 197002.35 electrons)
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Example

Particle balance over the stages: end of depletion +
multiplication of the electron density by 3 · 10−7 (5.785

electrons in the volume), creation of the electron hole cloud,
SRH generation over 1µs,

and restart after the ’Monday-morning-crash’.
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Example

Thank you for your attention

and thanks to the HLL-Munich for the collaboration (R. Richter, G. Lutz, L. Strüder and

many others - at WIAS, too)
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