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Existence of bounded discrete
steady state solutions of

the van Roosbroeck system
on boundary conforming
Delaunay grids
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Aims, Outline

Aim: establish the essential qualitative properties of the
analytic problem for a discrete version for some classes of grids
independent of h and 7, hence unconditionally stable schemes
for arbitrary parameter dependencies.

-uniqueness of the equilibrium
-dissipativity
-bounds for steady state solutions

Outline

-Introduction

- Delaunay grids, discretization

-Bounds by weak discrete maximum principle
-Example X-ray-CCD (candidate LCLS-detector)
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Warm up: Van Roosbroeck’s Equations

—V-eVw =C —n+p, (1)
on
D . n — , 2
5 + V- u,nVo (2)
9,
—872 ~ V- u,pVe, = R, (3)

in SxQ,5=(0,1T),

QO c RY, 2< N <3, a bounded polyhedral domain,
0l=ITpUI'y, I'p closed, positive surface measure.
Boundary conditions:

hom. Neumann on insulating parts,

Dirichlet on Ohmic contacts,

and gates: hom./inhom. Neumann ¢/w

(Ow/0V + a(w —wr) =0, ¥ outer normal vector).
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Van Roosbroeck’s Equations

T he physical meaning of the quantities is :

e ¢, = w — logn - quasi-Fermi potential n,

e ¢, = w +logp - quasi-Fermi potential p,

e n =¥ 9 - electron density,

e p=e”"" - hole density,

e w - electrostatic potential,

e ¢ - dielectric permittivity,

e (' - density of impurities,

e R - recombination / generation rate R = r(z,n,p)(1 —np),
® L,, - Ccarrier mobilities u,, > 0, Einstein relation.

Scaling of the potentials: Up, 'temperature voltage’, 1V = 40U7.
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Van Roosbroeck’s Equations

Rewriting yields:

0
a? V- 1, (Vi — nVw) = R, (4)
dp
5~V VDt pVw) = R, (5)
or 5
n w ®n —
5 — V- ue”Ve~ R, (6)
Gp Cw
ot — V- ppe”"Ve” = R, (7)

(e~ %, e Slotboom variables).
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Delaunay grids, notations

N-dimensional simplices E;* such that
Q=U;Q = UE

[ simplex index, with positive volume in a right—handed coordi-
nate system.

The N x N matrix of the vertex coordinates represents the sim-
plex in a local per simplex coordinate system:

11— LI N+1 - - - LIN — LI N+1
p— 21— L2 N+1 - - - XL2N — L2 N+1
IN1 — X2 N+1 - - - LINN — TNN+1
x’f = (214,294, ...,2Tn;) iS the vector of the space coordinates of

the vertex : of the simplex.

Edges (simplices with N =1) are denoted by e;; = x; —x;. The
simplex Efv‘l IS the 'surface’ opposite to vertex : of the simplex
EV.
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Delaunay grids, definitions

A discretization by simplices E{V is called a Delaunay grid
if the balls defined by the N +1 vertices of EY V i do not contain
any vertex x;, x; € EY, x; ¢ EV.

Boundary conforming Delaunay grid: )
the circum center of any E{V c (), is in €.

Let Vi={xe R" :||x — x| < ||x —x;||,V vertices x; € Q}

and 9V, = V; \ V;. V; is the Voronoi volume of vertex i and 9V; is
the corresponding Voronoi surface.

The Voronoi volume element V;; of the vertex ¢ with respect to
the simplex Eﬁv IS the intersection of the simplex E§V and the
VVoronoi volume V; of vertex s.
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Delaunay grids

Example:

S12

A triangle E? and a tetrahedron E? and the related Voronoi
faces.

E1u + &c’?u/@u +& =0
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Finite volume scheme

—V - eVu = f,

6(33) — €,T c Ql, V’LL‘aVi’k(i) ~ (uk(i) — uz)/\elk(l)\

/ —V'GZV’LL dV = —GZZ/ VUdSk
V;j i ]

k(i) < OVik)
IV 1)
~ —¢ —(uy — u;) + BI
zk: € k()|
= aluelGa(L,—lulpy+BL  (8)
Summation over all nodes in the simplex j:
Z —V - eVudV =~ ¢GT[y]Gu| v + BL (9)
vyeEy " J
BI ::/ —eVu - dS & |ENT AV (6 i + ).
Eév_lm/i 2, J J
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Finite volume scheme

| v = Vs, V=V

1

where || denotes a diagonal matrix and

the difference matrix along all edges, hence a mapping form
nodes to edges.

o 0 -1 1 0O m —m Yo+ =3 —2
GT[V]G = 1 0 —1 —72 0 V2 = —73 Y1+ 73 —N .
—1 1 0 Y3 —Y3 0 —Y2 - Y1+ Vo
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Finite volume scheme

(GTG)y >0, (GTG)=; <0, and 17GT = 0", (10)

If the grid is connected,

Ale) = Z G v]G

EZGQ

IS irreducible, weakly diagonally dominant, hence a bounded
inverse exists with 0 < A~! < oo, because

Vi)
Tk |ez',/<;(z')| 7
>, Vazo. (11)

EjNaeiknEjNEQi

due to the requirement 'boundary conforming Delaunay grid’.
Similar to integration by parts test functions can be introduced
and a 'weak discrete maximum principle’ holds.
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Finite volume scheme

Price to pay:
uT|ENGTGu|EN
J J

does not introduce a discrete gradient seminorm on one simplex
only. A way out for parameter evaluation is

HVU||2‘EN = |EL}N‘UT‘ENPJTPL;1U‘EN7
J J J

the finite element gradient seminorm.
For any average one requires

€eip = Z X(E(il?,u, |VUD),

E{3e, B €9

Z geika%k > 0.

E;VBGM,E?[GQZ'
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Scharfetter-Gummel-scheme

T he discrete problem reads:

G'eGw = [V]g(C,n,p), g=C—n+p, n=[e"]u, p=[e"]v, (12)

As, (pn, w)e™ = G e’ /sh(Gw /2)]Gu = [V][r(x,n, p)](1 — [v]w),
(13)

As ity —w)e = GT [, /sh(Gw /2))Gv = [V][r(x, m, p))(1 — [u}v).
(14)
Slotboom variables u := e, v := e,
e (e~ ) = const with
W = (w; + wy())/2, sh(s) ;= sinh(s)/s, sh(s) =sh(—s) > 1,
b(2s) = e /sh(s) = 2s/(e™* —1).
Further details and dissipativity see Gajewski,Ga, ZAMM 1996.
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Boundary conditions

On insulating boundary parts the normal derivatives of the
quasi-Fermi-potentials vanish 9d¢./0v =0 (k = n,p, v outer nor-
mal).

The boundary conditions at Ohmic contacts are (due to charge
neutrality, infinite recombination velocity, and infinite conduc-
tivity of a metallic contact)

w\pDk = wy+ Wy, —ehe = —O|[‘Dk,U|[‘Dk — ¢ Onk. U’[’Dk — ek,

(15)
where wy = ¢, = ¢, IS the "applied potential’, while wy;. is the
"built-in voltage’.
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Bounds w

Assume
< <, v<v <0V x € Q. (16)

The right hand side of the discrete Poisson equation ¢;(C;, n;, p;)
is with respect to w; a monotone mapping of IR onto IR V-.
Let C' = min(C(z)) and € = max(C(z)) denote the minimum and
maximum of the doping concentration. Hence the solution w;
of g(w;) =0 at any vertex x; € Q fulfills the bounds

: + + -—<e" < + -
u

6 = ~ ~ - . - =
2U 412 2 402
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Bounds w

Proposition 1 The discrete electrostatic potential w' unique

solution of (12), with w replaced by w', u, v by u’, v¥, and

fulfilled (16)) can be estimated by

w = min(wlr,,w) < w < max(w|r,,w) =: 0. (17)

PROOF: Suppose w? > w. Testing ((12) with the positive part
(w¥ — )" yields

(W) —w0) T GTeGw" — (W' — )™ [V]g(C, w’,u’, v") = 0.

signG(w' — )" = signGw? if G(w® — )t £0, ¢(C,w, 1, ) =0,
hence (W' — )™ GTeGW" > 0 and (w’ —w)™ [V]g(C,
holds, this is a contradiction.
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Bounds w

The mapping with respect w' is continuous, differentiable, and
bounded and maps the convex domain w < w? < w onto itself.
The linear problem with g = 0 has a unique solution (G'eG is
weakly diagonally dominant) and embedding with respect to g
does not change the degree, uniqueness follows directly from
maximum principle: let w}, w) to be solutions of (12)), assume
(w) —w)™ > 0 for at least one z; € ), testing

(Wi —wy) TGl eG (WY — wy) — (W) — wy) T [V](g(wy) — g(wy)) =0,

and using the monotonicity of g with respect to w; yields a
contradiction. []
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Bounds u, v

Proposition 2 Let w! be a solution of

G'eGw! = [V]g(C,w',u’,v"), (18)

where u’, v respect the bounds ((16) and suppose u', v! to be
solutions of the decoupled continuity equations

1

As(pin, whiu = [V]r(x, e 0’ eV VO (1 — [o'Tul),  (19)

As(pty, —wOv! = [Vr(x, eV u, e V' vO) (1 — [v).  (20)

Assume for some sufficiently large w™,
max(w|r,) — min(w|p,) < w' < oo, that

Vi is true. Then eV | e is an lower, upper solution for equations
(13, [14).

NUSOD, Newark, Sept. 26, 2007 18 lwlilals



Bounds u, v

PROOF: Assuming u'! > ev" for at least one x; € (1 and testing
(19) with (u' — e*")*7T yields (u! — e* )T Ag(p,, whu! > 0 inde-
pendently of u,, w!. On the other hand (1 — [vo]ew+) < 0, and
r(x,e” u’, e ™ v%)] > 0 holds, hence u < ¢*" follows, and so do
the other bounds. []
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Bounds u, v

Remark 1 Choosing in (16

AN

S«

U=71=e¢" yields

and with (17

w < max(w|r,,n

IS
A
o
VAN
S|

|
IA
<
IA
<

~

w = min(w|r,, n((C+VC2+4)/2) —w") <w

(C+VC2+4)/2) +wh)

, u, v, v accordingly u=v=¢e¢",

+

(23)

These are the final bounds because Proposition |2 is true with

(21/23,/23), too.

The bounds are identical with the analytic ones.
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Uniqueness if |w'| small

Linearization ...

further results and details see WIAS-Preprint
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Summary

The summary of the results is:

Theorem 1 On any connected, boundary conforming Delau-
nay grid with n vertices, the problem (12/13,14) with positive
Dirichlet boundary measure has at least one solution fulfilling
the bounds (21], (22, |23).

PROOF: The established bounds form a convex set in IR
and the two step mapping (proposition [1], [19], [20]) is continu-
ous, differentiable, and maps the convex set onto itself, hence
Brouwer’s fixed point theorem guarantees the existence of at
least one fixed point. L]
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Example

X-ray CCD (a possible detector for the Stanford LCLS (Linac
Coherent Light Source)):

a ¥
Z R

&

Doping ("equilibrium potential’)

Ik = = = . ¢ =) ) =) = =
N ®2 - a3 a8 = i N = 2
14 = 2 & @ =

& @ ~

NUSOD, Newark, Sept. 26, 2007 23 lwlilals



Example

.": log(particles)

6.0

200 400 600

)%‘\ %.,{.?/f-;--‘-‘\’-'% -

bt

197002.35 particles.

box1rR2 Electrs

box11R2 Electrs

box1M23 Electrs
800 Tis

box1rR3 Electrs

box1IR3 Electrs
s e
box2R2 Electrs

box5R3 Electrs

V const R1=-15V,MOS1=5 01V ,MOS82=5 01V,M0S83=5 01V, ,R4=-15V,BACK =50V

R3=-15V,-10,-15V(0,100,380,480ns),R2=-10,-15,-10V(100,200,280,3680ns), SRH(5e-3s)

Time dependent paricle numbers in different regions (shifting
Ry — R3, 80ns wait, R3 — Ry, 620ns wait, 197002.35 electrons)
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Example

\ particles

147790
147785@?'3)‘&@' RREY
N ¥
Sum  Electrs
147783.945 + 1.8 p. SHH-gen. during cloud distr.
147780
Restart t=207s, eps_Newt*0.5, eps_linSys*0.1
14?7’7’51
0.0 200 400 600 800 T/us

V const: R1=-15V, MOS1=5.01V, MOS2=5.01V, MOS3=5.01V, R4=-15V, BACK=-50V,

R3=-15V,-10,-15V(0,100,380,480ns),R2=-10,-15,-10V(100,200,280,380ns),SRH(5¢-3s)

Particle balance over the stages: end of depletion +
multiplication of the electron density by 3107 (5.785
electrons in the volume), creation of the electron hole cloud,
SRH generation over 1us,
and restart after the "Monday-morning-crash’.
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Example

[ hank you for your attention
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