

L'Université canadienne Cunada's universit

Numerical Simulation of Optoelectronic Devices Nottingham, UK 1-4 September, 2008

Properties of Laterally-Coupled Distributed Feedback Lasers with Higher Order Gratings Ron Millett, K. Hinzer, T. Hall, and H. Schriemer

> Centre for Research in PhotonicsUniversity of Ottawa Ottawa, ON, Canada K1R 7T1

L'Université canadienne Cumada's university

Outline

F Laterally-coupled distributed feedback (LC- DFB) laser introduction

NUSOD 2008

- **Higher order gratings**
- **Effect of grating geometry on performance**
	- **Grating order**
	- **Duty cycle**
	- **Grating height and width**
- **Cavity length**
- **Grating tooth rounding**
- $\sim \lambda/4$ phase-shifts

NUSOD 2008

Cunada's universit

LC-DFB Laser Introduction

- F. Grating patterned out of upper ridge waveguide
- ٠ Higher order grating
- ٠ Can be fabricated using stepper lithography or nanoimprinting – amenable to massmanufacturing

CRPuO

L'Université canadienne Cunada's university

NUSOD 2008

- ٠ Fundamental mode is evanescently coupled to laterally-positioned grating regions
- \blacksquare MQW active region
- ٠ Au/Pt/Ti contact with SiO $_{\rm 2}$ dielectric

CRPuO

L'Université canadienne Cunada's universit

NUSOD 2008

CRPuO Modified coupled-mode theory

In higher order gratings, additional terms are included to account for light radiating in transverse direction:

$$
\frac{dA}{dz} + \left(-\alpha - i\delta - i\zeta_1 \right) A = i \left(\kappa_p^* + \zeta_2 \right) B
$$

$$
-\frac{dB}{dz} + \left(-\alpha - i\delta - i\zeta_3 \right) B = i \left(\kappa_p + \zeta_4 \right) A
$$

 $A,B =$ longitudinal mode fields

 κ_p = Coupling coefficient

 α = modal gain

 δ = Bragg frequency detuning

 $\zeta_{1,\dots,4}$ = Streifer correction terms

Cumada's arrivers

NUSOD 2008

CRPuO Modified coupled-mode theory

Correction terms are determined through the solution of the wave equation:

$$
\frac{\partial^2 \varepsilon_m^{(i)}(x,y)}{\partial x^2} + \frac{\partial^2 \varepsilon_m^{(i)}(x,y)}{\partial y^2} + \left[k_0^2 n_0^2(x,y) - \beta_m^2\right] \varepsilon_m^{(i)}(x,y)
$$

= $-k_0^2 A_{m-i}(x,y) \varepsilon_0(x,y), \qquad m \neq i, i = 0, p.$

ε m = partial wave field of order *m ε ⁰⁼*fundamental TE mode field k_{0} = Vacuum wavenumber β_m = partial wave propagation constant *A ^q = qth* order Fourier coefficient

Radiating partial wave fields are calculated using the finite-element method with absorbing boundary conditions

NUSOD 2008

L'Université canadienne Cunada's universit

Streifer correction terms

 $\begin{aligned} \label{eq:2} &\frac{F_{O_{T}}_{Warg}}{D_{T}}_{O_{T}}_{O_{T}}\\ &\frac{F_{O_{T}}}{D_{T}}_{O_{T}}\end{aligned}$

 $\left(-\alpha -i \delta -i \zeta _{1}\right)$ $\left(-\alpha -i\delta -i\zeta_3\right)$ $\int_{1}^{1} A = i \left(\kappa_p^* + \zeta_2 \right)$ 3^{2} $\binom{n}{p}$ 3^{2} *dA* $\frac{d}{dz}$ + $(-\alpha - i\delta - i\zeta_1)A = i\left[\kappa + \zeta_2\right]B$ *dB* $\frac{d}{dz}$ + $(-\alpha - i\delta - i\zeta_3)B = i\left(\kappa + \frac{\epsilon}{24}\right)A$ $\alpha - i\delta - i\zeta_1$ $A = i \kappa + \zeta_2$ $\alpha - i\delta - i\zeta_2 |B = i| \kappa + \zeta_1$ $+\left(-\alpha - i\delta - i\zeta_1\right)A = i\left(\kappa_p^* + \zeta_2\right)$ $\frac{dB}{d\theta} + \left(-\alpha - i\delta - i\gamma\right)R - i\left(\kappa + \gamma\right)$ $+(-\alpha - i\delta - i\zeta_3)B = i\left(\kappa_p + \zeta_4\right)$

 ζ_1 term – coupling of partial waves generated by forward-propagating mode to the forwardpropagating mode

Forward-propagating mode

CRPuO

L'Université canadienne Conside's ordiservity

NUSOD 2008

П A measure of grating strength in higher order gratings is the effective coupling coefficient:

$$
\kappa_{\text{eff}} = \sqrt{(\kappa_p^* + \zeta_2)(\kappa_p + \zeta_4)} = |\kappa_{\text{eff}}| e^{j\phi(\kappa_{\text{eff}})}
$$

- **Combination of all coupling** terms between forward- to backward- propagating (and vice versa) waves
- Values of κ L \approx 1.25 (L=cavity length) are desirable for DFB lasers

CRPuC

Courtesy of Canadian Photonics Fabrication Centre

- Minimum threshold gain cavity lengths can be found (e.g. ~500 microns for 3rd order gratins) for all grating orders
- Form of threshold gain vs. duty cycle dependence is related to magnitude of effective coupling coefficient, and remains similar for all cavity lengths.

- Gratings showed significant rounding of the grating teeth during fabrication
- This can be modeled with a change of the Fourier coefficient of the grating

 5°_{0}

 0.2

 $h1/h3$ (μ m)

 0.1

the grating strength (nearly half) is observed as the grating becomes more rounded

In first-order gratings, adding a λ/4 phase-shift will improve longitudinal mode discrimination and lower threshold gain

• Generally worse performance (higher threshold, lower gain discrimination) in higher order gratings when using a central λ/4 phase-shift

R. Millett, et al., Proc. SPIE, vol. 7099

L'Université canadienne Cumada's universi-

NUSOD 2008

- Assuming a manufacturing process capable of third-order gratings and a
duty cycle of 0.7
Minimum threshold gain cavity duty cycle of 0.7
- Minimum threshold gain cavity length occurs at L=500 μ m
- At this L, the required threshold gain is 38.6 cm-1, Bragg frequency deviation is $\delta{=}3800$ m⁻¹ (~0.3 nm) wavelength deviation)
- Using LAS2D simulation tool, this corresponds to a threshold current of \sim 10.9 mA

CRPuC

L'Université canadienne Cumula's university

NUSOD 2008

Conclusions

- **LC-DFB lasers with higher order gratings can** be manufactured using stepper lithography
- Laser performance and tolerances are determined by grating geometry, especially duty cycle
- \mathbb{R}^3 Addition of a phase-shift, or rounding of the grating teeth, is generally detrimental for higher order grating performance
- Radiating partial wave effects should be included in the calculation of LC-DFB lasers with higher order gratings

L'Université canadienne Cumula's universit

NUSOD 2008

Acknowledgments

Support has been provided by:

- **DRETA:** Ontario Centres of Excellence (OCE)
- **Canadian Foundation for Innovation (CFI)**
- $\overline{}$ Natural Sciences and Engineering Research Council (NSERC)
- **CONECHIP Photonics**
- **Example Research Chairs Program**
- **CMC Microsystems**
- **E.** Canadian Photonics Fabrication Centre
- **DREAD Graduate Scholarship Program**
- **E.** Communications Research Centre Canada

