A new Technique for Simulating Semiconductor Laser Resonators

Britta Heubeck Christoph Pflaum

Department of System Simulation (LSS) University of Erlangen-Nuremberg, Germany

NUSOD conference, September 1st, 2008

A new Technique for Simulating Semiconductor Laser Resonators

Outline

2 Simulation Technique

A new Technique for Simulating Semiconductor Laser Resonators

Optimal Laser					
Good beam quality	\leftrightarrow	High output power	\leftrightarrow	Stabilized wavelength	

Understanding of the **influence** of different parameters on the dynamics in the laser device

\rightarrow Simulation of the laser device

Distributed Feedback Laser

- Long resonator with length *L*
- **Small** stripe width of size *s* of injection current *j*
- Layers with different refractive indices (gratings) → Internal reflections of the optical wave

Difficulties in the simulation of the optical wave

- Large-scale simulations of the wave equation require a large number of grid points
- Internal reflections → Propagation in forward and backward direction has to be treated simultaneously

A new Technique for Simulating Semiconductor Laser Resonators

Usual Approaches

Well-known methods for the simulation of optical waves

- Beam Propagation Method
- Finite Difference Time Domain Method
- Finite Element Method (FEM) with standard Finite Elements

But: Internal reflections <u>and</u> large resonators **cannot** be simulated by these methods

 $\xrightarrow{\mathbf{1D}}$ Transfer Matrix Method (TMM)

But: Tapered lasers need a 2D-simulation

Idea

Trigonometric Finite Wave Elements (TFWE)

- Special Finite Elements
- Provide the same solution as the TMM for 1D Helmholtz equation
- Extendable to higher dimensions
- Extendable to time-dynamic problems

\rightarrow TFWE method combines advantages of TMM and FEM

Trigonometric Finite Wave Elements in 1D

1D linear nodal basis functions are multiplied by appropriate **sine** and **cosine** functions

These 3 basis functions per node span the Finite Element space V_h .

k: wave number

Trigonometric Finite Wave Elements in 2D

Construct TFWE in **2D** by a tensor product of 1D TFWE in propagation direction and linear nodal basis functions in perpendicular direction

Oscillation Assumption

Oscillation Assumption

Let $u \in H^2(\Omega) \cap C(\Omega)$ oscillate with an approximate local wave number k. This means, that $u = u^+ \exp(ikx) + u^- \exp(-ikx)$, where $u^+ \exp(ikx) \in H^2(\tilde{\Omega}_h)$, $u^- \exp(-ikx) \in H^2(\tilde{\Omega}_h)$, $\|u_{xx}^+\|_{L^2(\tilde{\Omega}_h)} \ll \|u_{xx}\|_{L^2(\Omega)}$, and $\|u_{xx}^-\|_{L^2(\tilde{\Omega}_h)} \ll \|u_{xx}\|_{L^2(\Omega)}$.

Approximation property of TFWE

Oscillation Assumption

Let $u \in H^2(\Omega) \cap C(\Omega)$ oscillate with local wave number k.

Theorem

Let $u \in H^2(\Omega)$ satisfy the Oscillation Assumption. Then,

$$\|u - I_h^{osc}(u)\|_{H^1(\Omega)} \le Ch(k_{max}h + 1) \Big(\|u^+\|_{H^2(\tilde{\Omega}_h)} + \|u^-\|_{H^2(\tilde{\Omega}_h)} \Big)$$

where *C* can be chosen **independently** of *h* and k_{max} , if *h*, $|k|_{H^{1,\infty}(\tilde{\Omega}_h)}$, and $|k|_{H^{2,\infty}(\tilde{\Omega}_h)}$ are bounded from above.

1D: $k_{max} := \max_{1 \le j \le N} |k_j|$ 2D: $k_{max} := \max_{1 \le j \le N_y} \max_{1 \le i \le N_x} |k_{ij}|$ k_j : discretized wave numbers N: number of grid points h := h $l_h^{osc} : H^2(\Omega) \longrightarrow V_h$: interpolation operator, V_h : TFWE space

Approximation property of standard Finite Elements

Oscillation Assumption

Let $u \in H^2(\Omega) \cap C(\Omega)$ oscillate with local wave number *k*.

Theorem

Let $u \in H^2(\Omega)$ satisfy the Oscillation Assumption. Then, we have

$$\|u - I_h(u)\|_{H^1(\Omega)} \leq Ch(k_{max} + 1)^2 (\|u^+\|_{H^2(\tilde{\Omega}_h)} + \|u^-\|_{H^2(\tilde{\Omega}_h)})$$

where *C* can be chosen **independently** of *h* and k_{max} , if *h*, $|k|_{H^{1,\infty}(\tilde{\Omega}_h)}$, and $|k|_{H^{2,\infty}(\tilde{\Omega}_h)}$ are bounded from above.

- 1D: $I_h : H^2(\Omega) \longrightarrow V_h^{lin}$: linear interpolation operator V_h^{lin} : linear FE space
- 2D: $U_h^{''} : H^2(\Omega) \longrightarrow V_h^{bilin}$: bilinear interpolation operator V_h^{bilin} : bilinear FE space

Conclusion

Conclusion

Increasing wave number k_{max} , assuming $hk_{max} < C$:

- The upper bound for the approximation error for standard FE **increases** with k_{max}^2
- The upper bound for the approximation error for TFWE keeps constant

Remark

The assumption $hk_{max} < C$ is true in most applications, e.g. in computational optics one has $h < \tilde{C}\lambda = \tilde{C}\frac{2\pi}{k}$.

 $\boldsymbol{\lambda} :$ wavelength of the considered optical wave

 $C, \tilde{C} > 0$: constants independent of **h** and k

A new Technique for Simulating Semiconductor Laser Resonators

System of Coupled Partial Differential Equations

 Behavior of wave *E* is described by the wave equation; assuming *E*(x, t) = E(x, t) exp(iωt) leads to

$$2\mathrm{i}rac{ar{k}(\mathbf{n}_{\mathsf{A}})}{v_g}rac{\partial \mathsf{E}}{\partial t}= riangle \mathsf{E}+k^2(\mathbf{n}_{\mathsf{A}})\mathsf{E}$$

 Drift-diffusion equations determine the time-dynamic behavior of the carrier densities n_A and n_B

$$\frac{\partial \mathbf{n}_{\mathbf{A}}}{\partial t} = \nabla (D_{A} \nabla \mathbf{n}_{\mathbf{A}}) + C_{1} \mathbf{n}_{\mathbf{B}} - C_{2} \mathbf{n}_{\mathbf{A}} - r_{rec,A} (|\mathbf{E}|^{2}, \mathbf{n}_{\mathbf{A}}) \text{ and}$$
$$\frac{\partial \mathbf{n}_{\mathbf{B}}}{\partial t} = \nabla (D_{B} \nabla \mathbf{n}_{\mathbf{B}}) + \tilde{C}_{0} \mathbf{j} - \tilde{C}_{1} \mathbf{n}_{\mathbf{B}} + \tilde{C}_{2} \mathbf{n}_{\mathbf{A}} - r_{rec,B}$$

D_A, D_B: ambipolar diffusion constants, *j*: current density, v_g: group velocity, r_{rec,A},r_{rec,B}: recombination densities

System of Coupled Partial Differential Equations

$$\begin{aligned} r_{rec,A} &= A_A \mathbf{n}_A + B_A \mathbf{n}_A^2 + C_A \mathbf{n}_A^3 + r_{stim}, \\ r_{rec,B} &= A_B \mathbf{n}_B + B_B \mathbf{n}_B^2, \\ r_{stim} &= \frac{c}{n_g} g_{nonlin} n, \\ g_{nonlin} &= \begin{cases} \frac{g_0}{1+\varepsilon n} ln(\frac{\mathbf{n}_A}{n_{tr}}) & \text{if } |\mathbf{n}_A| \ge n_{tr} \\ \frac{g_0}{1+\varepsilon n}(\frac{\mathbf{n}_A}{n_{tr}} - 1) & \text{if } |\mathbf{n}_A| < n_{tr} \end{cases} \\ k &= \frac{\omega n'}{c} + \alpha_H \frac{g_{nonlin}}{2} + i \frac{g_{nonlin} - \alpha_0}{2} \\ n &= \frac{\epsilon_0 n' n_g}{2\hbar \omega} |\tilde{E}|^2 = \frac{\epsilon_0 n' n_g}{2\hbar \omega} |\mathbf{E}|^2. \end{aligned}$$

 A_A, B_A, C_A, A_B, B_B : recombination coefficients, n_{tr} : transparency carrier density, α_H : Henry factor g_0 : differential gain, ε : gain compression factor, α_0 : absorption

Absorbing Boundary Condition (PML)

- Wave is considered on domain $\Omega =]0, L[\times] \frac{W}{2}, \frac{W}{2}[$
- Wave is emitted on left hand side (at x = 0) → Absorbing boundary condition ik E(0, y) = ∂E/∂x(0, y)
- Absorbing boundary is simulated by $\text{PML} \rightarrow$
 - Domain Ω is increased to $\tilde{\Omega} =] \delta, \mathcal{L}[\times] \frac{W}{2}, \frac{W}{2}[$
 - Schrödinger equation is transformed to

$$2i\frac{\tilde{k}}{v_g}\frac{\partial E}{\partial t} = \frac{\partial}{\partial x}\frac{k}{\tilde{k}}\frac{\partial E}{\partial x} + \frac{\tilde{k}}{k}\frac{\partial^2 E}{\partial y^2} + k\tilde{k}E$$

$$\begin{split} \tilde{k} &:= k - i\sigma(x) := k_0 \tilde{n} - i\sigma(x) \\ \tilde{k} &:= \tilde{k} - i\sigma(x) := k_0 \tilde{n} - i\sigma(x) \\ \sigma(x) &:= \sigma_c \frac{x^2}{\delta^2} \text{ for } x < 0, \ \sigma(x) := 0 \text{ for } x \ge 0 \\ \sigma_c &:= \frac{3}{2\delta} \log(1/R_0) \\ R_0 &:= 10^{-4} \text{ theoretical reflexion coefficient} \end{split}$$

Discretization

- **Spatial** discretization of the wave equation in propagation direction: at least one grid point per layer for resolving internal reflections
- **Temporal** discretization: wave with frequency $\omega \approx 1.935 PHz \rightarrow \text{time step size } \tau \approx 0.3 ps \rightarrow \omega \tau \approx 600.$

In the following examples: 840 layers, 841 grid points in propagation direction, 16/31 grid points in perpendicular direction, total simulation time: 4ns, current: 480mA, stripe width: $2.5\mu m$.

Photon and Carrier density ($\alpha_H = 0.0$)

9.57e+18 7.18e+18 4.79e+18 2.39e+18 0.00 2.06e+19 1.55e+19 1.04e+19 5.28e+18 1.65e+17

Photon density n

Carrier density n_A

Frequency Spectrum and Output Power ($\alpha_H = 0.0$)

Photon and Carrier density ($\alpha_H = -0.5$)

Photon density n

Carrier density nA

A new Technique for Simulating Semiconductor Laser Resonators

Frequency Spectrum and Output Power ($\alpha_H = -0.5$)

Photon and Carrier density ($\alpha_H = -2.5$)

Photon density n

Carrier density n_A

A new Technique for Simulating Semiconductor Laser Resonators

Frequency Spectrum and Output Power ($\alpha_H = -2.5$)

Photon and Carrier density ($\alpha_H = -3.0$)

Photon density n

Carrier density nA

A new Technique for Simulating Semiconductor Laser Resonators

Frequency Spectrum and Output Power ($\alpha_H = -3.0$)

Photon and Carrier density ($\alpha_H = 0.0, I = 960 \text{ mA}$)

Photon density n

Carrier density n_A

Frequency Spectrum and Output Power ($\alpha_H = 0.0, I = 960 \text{ mA}$)

Challenge Simulation Technique Simulation Results Summary and Outlook Photon and Carrier density ($\alpha_H = -2.0, s = 25 \mu m$) Photon density *n* Carrier density n_A 2.64e+19 1.80e+19 1.98e+19 1.37e+19 9.28e+18 1.32e+194.90e+18 6.60e+18 5.22e+17 0.00

Frequency Spectrum and Output Power ($\alpha_H = -2.0, s = 25 \mu m$)

Tapering

Zoom in photon density n

Carrier density nA

TFWE method combines advantages of FEM and TMM

- TFWE can be applied to time-periodic and time-dynamic wave problems
- Internal reflections can be simulated in 2D
- TFWE lead to better performance than standard FE

Simulation can support the tuning of DFB lasers

Influence of stripe width, current, Henry factor,... on the resulting mode, wavelength, and output power can be examined

Outlook

- Comparison: Experiment ↔ Simulation
- Simulation of different laser devices (disc lasers, three-section lasers,...)
- Extension of the simulation to 3D
- Introduction of multigrid method for solving the wave equation

