Laterally-corrugated ridge-waveguide listributed feedback lasers for 980 nm

<u>Antti Laakso</u>, Jukka Viheriälä, Mihail Dumitrescu, Juha Tommila, Kimmo Haring, Tomi Leinonen, Sanna Ranta and Markus Pessa

> Optoelectronics Research Centre Tampere University of Technology, Finland

e-mail: antti.i.laakso@tut.fi

Presentation outline

- Different DFB designs
- Coupling coefficient and κL
- Ridge geometry and different transverse modes
- PICS3D simulations
- Experimental results
- Summary

"Traditional" DFB designs

Akiba et al., *IEEE J. Quantum Electron.*, vol. 19, pp. 1052-1056, 1983

S. J. Jang et al., *IEEE Photon. Tech Lett.*, vol. 20, pp. 514-516, 2008

Optoelectronics Research Centre Tampere University of Technology

Laterally-corrugated DFB structure

Fabricated using UV-based nanoimprint lithography (UV-NIL), which enables pattern resolutions beyond the limitations set by the diffraction and scattering for the conventional techniques

• sin

rowth and processing sweep r yield and lower cost

Iimited interaction between the carriers and the grating structure
→ more stable devices

Coupling coefficient

For conventional DFB laser $n_1 + n_2 \approx 2 \cdot n_{eff}$, and coupling coefficient can be written as:

$$\kappa = k_0 \cdot (n_2 - n_1) \cdot \Gamma_g \cdot \frac{\sin(\pi m \gamma)}{\pi m}$$

Coupling coefficient

кL-value

ĸL-value

enough selectivity for single-mode output

- high *κL*-value
 - \rightarrow spatial hole burning
 - \rightarrow multiple longitudinal modes
- κ L-value should be around 1.0 2.0

кL-value

Number of longitudinal modes than fall within the FWHM of the grating stopband Third-order grating with n_{eff} =3.3 and Λ =440 nm

 \rightarrow 1-2 longitudinal modes within the FWHM of the grating stopband in order to achieve a good yield of single-mode devices

Optoelectronics Research Centre Tampere University of Technology

Ridge geometry and different transverse modes

Ridge geometry and different transverse modes

Ridge geometry and different transverse modes

Bragg wavelength difference between first and second transverse mode

PICS3D simulations

Normal fabricated un-coated RWG-EEL with same dimensions

- 10-15 mA threshold current
- 0.4-0.5 W/A slope efficiency

Experimental results

A third-order grating with period $\Lambda \approx 440$ nm $W = 1.5 \ \mu m$ $D = 0.5 \ \mu m$ $t = ? L = 570 \ \mu m$ 15 Power (mW) Voltage (V) 2 10 AR/HR –coated DFB structure without a phase shift region 0 0 30 40 50 Current (mA) 70 50 60 10 20 80 0 30 mA threshold current (g B) • 0.34 W/A slope efficiency 50 dB SMS-ratio at 10 mW (operated at 10 °C) 975 965 970 980 985 990 960 Wavelength (nm)

2.9.2008

Conclusion

- κL-product is a key design parameter
- Output characteristics depend on the ridge geometry
- 50 dB SMS-ratio has been achieved, but there is room for optimization

