

Department of Information Optics, Faculty of Physics University of Warsaw

Light transformations in metallo-dielectric nanolayers

NUSOD'08, Numerical Simulation of Optoelectronic Devices 1-5 September 2008, Nottingham, UK

Rafał Kotyński

1D Metallo-Dielectric Multilayers

Single Ag or LHM layer (Veselago, Pendry)

Asymmetric lens (Ramakrishna, Pendry, Schurig, Smith, Schultz, Fang, Zhang...)

Resonant tunnelling (Scalora, Sibilia, ...) Canalization (Belov, ...) Layered lens (Pendry, ...)

Linear Shift Invariant Systems (LSI)

Applications of spatial filtering

Fourier optics

4f correlator

Macro-scale

Fourier plasmonics (?)

Nano-scale

superlens

- 1. Imaging (superresolution) $\hat{H}_{norm} = \exp(-k_x^2/2\sigma_k^2)$ small σ_k 2. Laplace filtering (edge detection) $\hat{H}_{\delta^2} = -\alpha k_x^2$ 3. Beam splitting $\hat{H}_{spl} = \cos(k_0 x_0)$ 4. Wiener filtering (noise removal)
 - $\hat{H}_{Wiener} = (1 + |\hat{f}|^2 / |\hat{n}|^2)^{-1}$ 5. Matched filtering (pattern recognition) $\hat{H}_{CMF} = \hat{f}^*$

MTF – infinite uniform medium $\hat{H}_{z}(k_{x}) = \exp\left(i z \sqrt{n^{2} k_{0}^{2} - k_{x}^{2}}\right)$

Dielectric (glass, n=1.5)

Metal (Ag at 500nm)

Layered structures Transfer Matrix Method

Transfer Matrix Method:

TMM – plane wave transmission

TMM – 2D transmission (stationary state)

- Decomposition of the source into plane waves + TMM + reconstruction $E(x, z) = \int \hat{E}(k_x) \exp(ix k_x + i z \sqrt{k_0^r n^2 - k_x^2}) dx$ $F'(x, z) = \int \hat{E}'(k_x) \exp(ix k_x + i z \sqrt{k_0^2 n^2 - k_x^2}) dx$

Orders of magnitude faster than FDTD

TMM – time domain simulation

Dispersive reshapement of a 1D pulse at a RHM/LHM boundary

Dispersive reshapement of a 2D wavefront at a RHM/LHM boundary

- Decomposition of the source into plane waves + TMM + reconstruction $E(x, z, t) = \Re \int \int \hat{E}(k_x, \omega) \exp(ix k_x + i z \sqrt{k_0^2 n^2 - k_x^2} - i \omega t) dx d\omega$ $E'(x, z, t) = \Re \int \int \hat{E}'(k_x, \omega) \exp(ix k_x + i z \sqrt{k_0^2 n^2 - k_x^2} - i \omega t) dx d\omega$ - Still a lot faster than FDTD

TMM – calculation of the Modulation Transfer Function and Point Spread Function

Full 3D imaging couple TE/TM spatial harmonics

Vectorial treatment:

$$\begin{array}{c} F_{\sigma}(\rho,\phi) = H_{\sigma}(\rho,\phi) = H_{\sigma}(\rho) \begin{bmatrix} -H_{\sigma}(\rho) \\ 0 \end{bmatrix} = H_{\sigma}(\rho,\phi) = H_{\sigma}(\rho) \begin{bmatrix} -H_{\sigma}(\rho) \\ 0 \end{bmatrix} = H_{\sigma}(\rho) \begin{bmatrix} exp(-2i\phi) & 0 \end{bmatrix} \\ \hline exp(-2i\phi) & 0 \end{bmatrix}$$
vector matrix vector Fourier-Bessel Transform of $(\hat{H}_{TM} + \hat{H}_{TE})/2$

$$\boldsymbol{H}_{\sigma}(\rho,\phi) = \boldsymbol{H}_{m}(\rho) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \boldsymbol{H}_{\delta}(\rho) \begin{bmatrix} 0 & \exp(2i\phi) \\ \exp(-2i\phi) & 0 \end{bmatrix}$$

Fourier-Bessel

Example: polarisation coupling in 2D for a circularly polarised point signal (imaging through 5 Ag-air 80nm layers)

1. Subwavelength imaging (superresolution) lver superlens

- Operation near the cut-off
- Evanescent wave enhancement with SPP
- Effective permittivity (EMT): $\overline{\epsilon_{\parallel}^{EMT}} = \overline{0}, \overline{\epsilon_{\perp}^{EMT}} = \alpha$

J.B. Pendry, Phys. Rev. Lett. 85, 3966, *Negative refraction makes a perfect lens* (2000)

0.8

0.6

PSF

1. Subwavelength imaging (superresolution)

Resonant tunnelling

M. Scalora et al. "Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks" Opt Expr., **15**, 508, 2007.

M. Scalora et al. "Transparent metallo-dielectric one dimensional photonic band gap structures" Appl. Phys., **83**, 2377, 1998.

Resonant tunnelling

1. Subwavelength imaging (superresolution)

Canalization

P. Belov, Y. Hao, Phys Rev. 73, 113110 (2006)

The same FP resonant condition for any angle of incidence and for a range of evanescent waves! $L/\lambda = m/2$

Regime (EMT):
$$\overline{\epsilon_{\parallel}^{EMT}} = 1$$
, $\overline{\epsilon_{\perp}^{EMT}} = \infty$

Canalization regime – lossless case

Canalization regime - with losses

1.4

1.2

1.0

8.0 ^C

0.6

0.4

0.2

$\epsilon_{Ag} = -14.68 + 0.65i$ $\log_{10} |r|$ $Arg(t)/\pi$ $log_{10}|t|$ 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 ō 5 10 15 20 0 5 10 15 20 0 5 10 15 20 k_a/k_0 k_x/k_0 k_x/k_0 1st FP resonance TM TE $L/\lambda = 0.5$ diffraction in air

2. Laplace filtering

- 1D Laplace filter $H(x) = 2 \,\delta(x) - \delta(x - \epsilon) + \delta(x + \epsilon)$

- 2D discrete Laplace filter:

 $H_{ij} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$

Optimization of the multilayer for Laplace filtering

Optimised structure

Point Spread Function

Formulation of the criterion: Desired MTF: $\hat{H}(k_x) = (1 - \cos(\eta_s k_x)) \cdot e^{-i\eta_x}$ Light efficiency: $|\hat{H}|_{mean} \ge \eta_m$ SPP suppression: $max(|\hat{H}|) \le \eta_{max}$

Transformation of the incident

2. Laplace filtering (and subwavelength imaging) Asymmetric flat lens

Experimental demonstration: Fang, Lee, Sun, Zhang, Science 2005, and Melville, Blaikie

Modulation Transfer Function

PSF (Laplace spatial filter)

Response of the asymmetric lens to optical signals of different width

Sub-wavelength imaging

Laplace filtering

Response of the Ag-air multilayer to a rectangular incident signal

Response varies with the number of layers from imaging to Laplace filtering

Optimisation for positive and negative diffraction

MTF with a positive phase slope

MTF with a negative phase slope

Amplitude of the PSF [a.u.]

Optimisation for a phase-compensated response

- the width of the response is sub-wavelength
- however phase of Fresnel diffraction is compensated by the multilayer

Conclusions

Summary of the numerical method:

- Transfer Matrix Method → for arbitrary multi-layers
 (with lossy, dispersive, metallic, magnetic, or LHM layers)
- Field decomposition / reconstruction into plane-wave representation (spatial and spectral FT; compatible with modal solvers)
- 1D Point Spread Function computation (spatial FT of the MTF)
- 2D Point Spread Function computation (0th and 2nd order Hankel Tr.)
- Optimization of the multilayer with respect to the desired field transformation (Newton + random search)

Conclusions

diffraction in ai

DC !!!

0.2

diffraction in air

oscillations!!!

Summary of results:

- Singularities of the MTF introduce artefacts to imaging (DC, sidelobes, differential behaviour). Losses regularise the imaging system.

- Multilayers can be used for imaging with subwavelength resolution and Laplace filtering. Perhaps for more...

- A variety of transmission characteristics is possible: eg. for resonant tunnelling – one has a broadband widely tailored transparency spectral region, irregular shape of PSF, transparency at distances larger than wavelength.

for canalization – regular PSF; transmission at resonant frequencies only; multilayer width is limited by losses

Rafał Kotyński, "Light transformations in metallo-dielectric nanolayers"

Acknowledgements

University of Warsaw

Prof. Tomasz Szoplik dr. Jacek Pniewski Tomsz Stefaniuk Karol Król

Vrije Universiteit Brussel Prof. Kraccimir Panaiotov

Prof. Krassimir Panajotov

Projects/ frameworks

- Polish grant 0694/H03/2007/32
- COST actions MP 0702, MP0803