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1. Background — Highly strained quantum wells (QWs)  ntT (©)

Infrared light source for measuring environmental gases

Single mode lasing, mW output power, and wavelength tunability
— Bandgap tuning of QW laser for conventional optical fiber communication

— Larger compressive strain in well layer

Semiconductor lasers with highly strained In(Ga)As QWs on InP substrates

Well Strain [%] Lasing wavelength [um]
1 InGaAs 1.65 2.07
2 InGaAs 1.85 2.103
3 INnGaAs 1.94 2.13
4 INAS 3.2 2.33

M. Mitsuhara et al., APL, vol. 72, pp.3106, 1998.

T. Sato et al., APL, vol. 87, 211903, 2005.

T. Sato et al., JSTQE, vol. 13, pp.1079, 2007.

T. Sato et al., EL, vol. 43, pp. 1143, 2007.



2. Kk + p theory

k « p theory — Band structure analysis of semiconductors

e Gain (Absorption), Scattering rate, Photoluminescence (PL) spectra

Total Hamiltonian of unstrained system

Hamiltonian
originating from

Total system

k + p perturbation

Spin-orbit coupling

Strain and H, _,

Htotal =H K-p + Hs.o.
Transformation to strained system Hiotal
e Coordinate transformation Hyop
. . . H
» Expansion up to first order of strain 5.0,
Dy
Total Hamiltonian of strained system D,

Strain and H

Htotal — H K-p T H S.0. + Dk-p T Ds.o.

D, , is usually neglected in conventional k + p analysis




2-1. Effective-mass approximation
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2-2. 6- and 8-band model

Block-diagonalized Hamiltonian (QW, k, = 0)

H,,+H,, (Hamiltonian of unstrained system)
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For 6-band model, terms surrounded by O, are phenomenalogically incorporated
into the term surrounded by O, as the effective mass of an electron.




2-2. 6- and 8-band model

Block-diagonalized Hamiltonian (QW, k, = 0)

D, , (Hamiltonian of strained system)
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e Terms surrounded by O, are NOT taken into account in 6-band model.

 Terms surrounded by O, are linear in terms of strain, €, and K.

* For QWs with larger strain, the difference between 6- and 8-band model is increased.

* The strain at which the 6-band model becomes inappropriate is unclear.




2-3. Interaction between strain and spin-orbit coupling

Block-diagonalized Hamiltonian (QW)

» Discarded in the conventional analysis

* Independent of in-plane wavenumber, k,

» Constant energy shift of valence bands

 Larger energy shift for larger strain

=)
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D, (Hamiltonian of strained system)
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Non-negligible energy shift
for highly strained quantum
wells




3. Purpose NTT ©)

For QWs with larger strain
e 6- or 8-band model?

 Effect of interaction between spin-orbit coupling

and strain (D, )

 Highly strained In(Ga)As/InGaAs QWs on InP

 Strain dependence of band edge optical properties
- PL spectra
- Absorption spectra




4. Analytical methods

Band structure
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» Band structure —

8 X8 k + p Hamiltonian

— Finite-difference method

e PL spectra — Fermi’s golden rule
— sech lineshape broadening

» Absorption spectra — Non-variational approach (exciton effects)




5-1. 6- or 8-band model?

Highly strained InGaAs/InGaAs QWs (L, = 10 nm, € = 1.65%)

Layer structure
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5-1. 6- or 8-band model? NTT @)

Conduction band structure PL spectra
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» Around I'" point, almost the same conduction band structure for both models

« About PL spectra, good agreement with experiment for both models




5-1. 6- or 8-band model?

Highly strained InAs/InGaAs QWs (L, = 6 nm, € = 3.2%)

Layer structure
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5-1. 6- or 8-band model? NTT @)
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Conduction band structure PL spectra
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* Non-negligible energy shift around I" point for 8-band model

* For 6-band model, PL peak wavelength is 150 nm too short

» About PL spectra, good agreement with experiment for 8-band model




5-2. Effect of D

Normalized PL intensity
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 InGaAs/InGaAs QWs (L, = 10 nm, £ = 1.65%)

« 10-nm red shift in calculated PL spectrum




5-2. Effect of D
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* InAs/InGaAs QWs (L, = 6 nm, € = 3.2%)

* 40-nm red shift in calculated PL spectrum

» Excellent agreement with experiment for 8-band model




5-3. Strain dependence of band edge optical properties
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« Stronger quantum confinement for larger strain

* Difference between models becomes large around a strain of 2%.




5-4. Thickness dependence of PL peak wavelength NTT (O

PL peak wavelength as a function of L,
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* INAs/InGaAs QWs (e = 3.2%)

> 100 nm too short for 6-band model

» Good agreement between experiment and 8-band model with D |




5-5. Absorption spectra

Absorption spectra
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* INAs/InGaAs QWs (e = 3.2%)

» Good agreement between experiment and 8-band model with D




6. Conclusion NTT O

e 6- and 8-band k - p theory
- Highly strained In(Ga)As/InGaAs QWs
(strain up to 3.2%)

e Interaction between strain and spin-orbit coupling (D, )
- 8-band model with D , for InGaAs/InGaAs QWs
with the strain larger than 2%






