

Successful Application of the 8-band *k•p* Framework to Optical Properties of Highly Strained In(Ga)As/InGaAs Quantum Wells with Strong Conduction-Valence Band Coupling

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano NTT Photonics Laboratories, Japan e-mail:fujisawa@aecl.ntt.co.jp

- 1. Background Highly strained quantum wells
- 2. *k p* theory
- 3. Purpose
- 4. Analytical methods
- 5. Numerical and experimental results
- 6. Conclusion

Infrared light source for measuring environmental gases

Single mode lasing, mW output power, and wavelength tunability

- \rightarrow Bandgap tuning of QW laser for conventional optical fiber communication
- \rightarrow Larger compressive strain in well layer

Semiconductor lasers with highly strained In(Ga)As QWs on InP substrates					
	Well	Strain [%]	Lasing wavelength [µm]		
1	InGaAs	1.65	2.07		
2	InGaAs	1.85	2.103		
3	InGaAs	1.94	2.13		
4	InAs	3.2	2.33		

- 1. M. Mitsuhara et al., APL, vol. 72, pp.3106, 1998.
- 2. T. Sato *et al.*, APL, vol. 87, 211903, 2005.
- 3. T. Sato et al., JSTQE, vol. 13, pp.1079, 2007.
- 4. T. Sato et al., EL, vol. 43, pp. 1143, 2007.

2. *k* • *p* theory

- $\mathbf{k} \cdot \mathbf{p}$ theory Band structure analysis of semiconductors
- Gain (Absorption), Scattering rate, Photoluminescence (PL) spectra

Total Hamiltonian of unstrained system

$$H_{total} = H_{k \cdot p} + H_{s.o.}$$

Transformation to strained system

- Coordinate transformation
- Expansion up to first order of strain

Total Hamiltonian of strained system

$$\begin{split} H_{total} &= H_{k \cdot p} + H_{s.o.} + D_{k \cdot p} + D_{s.o.} \\ &\approx H_{k \cdot p} + H_{s.o.} + D_{k \cdot p} \end{split}$$

 $D_{\text{s.o.}}$ is usually neglected in conventional $\boldsymbol{k} \cdot \boldsymbol{p}$ analysis

	Hamiltonian	
	originating from	
H _{total}	Total system	
$H_{k \bullet p}$	<i>k</i> ⋅ <i>p</i> perturbation	
H _{s.o.}	Spin-orbit coupling	
$D_{k \cdot p}$	Strain and $H_{k \cdot p}$	
D _{s.o.}	Strain and H _{s.o.}	

Band	Parabolic	4-band	
С	m _{C,eff}	$m_{C, eff}$	
ΗH	m _{HH,eff}	Coupling	
LH	m _{LH,eff}	Coupling	
SO	m _{SO,eff}	m _{SO,eff}	
Band	6-band	8-band	
С	m _{C,eff}	Coupling	
HH	Coupling		
LH			
SO			

C: Conduction band HH: Heavy-hole band LH: Light-hole band SO: Spin-orbit split-off band

Block-diagonalized Hamiltonian (QW, $k_t = 0$)

For 6-band model, terms surrounded by **O**, are phenomenalogically incorporated into the term surrounded by **O**, as the effective mass of an electron.

Block-diagonalized Hamiltonian (QW, $k_t = 0$)

$D_{k \cdot p}$ (Hamiltonian of strained system)

- Terms surrounded by \bigcirc , are NOT taken into account in 6-band model.
- Terms surrounded by \bigcirc , are linear in terms of strain, ε , and k_z .
- For QWs with larger strain, the difference between 6- and 8-band model is increased.
- The strain at which the 6-band model becomes inappropriate is unclear.

Block-diagonalized Hamiltonian (QW)

$D_{s.o.}$ (Hamiltonian of strained system)

- Discarded in the conventional analysis
- Independent of in-plane wavenumber, k_t
- Constant energy shift of valence bands
- Larger energy shift for larger strain

Non-negligible energy shift for highly strained quantum wells

For QWs with larger strain

- 6- or 8-band model?
- Effect of interaction between spin-orbit coupling and strain $(D_{s.o.})$

- Highly strained In(Ga)As/InGaAs QWs on InP
- Strain dependence of band edge optical properties
 - PL spectra
 - Absorption spectra

4. Analytical methods

- Band structure 8×8 k · p Hamiltonian
 Finite-difference method
- PL spectra Fermi's golden rule
 sech lineshape broadening

• Absorption spectra – Non-variational approach (exciton effects)

Around Γ point, almost the same conduction band structure for both models
About PL spectra, good agreement with experiment for both models

- Non-negligible energy shift around Γ point for 8-band model
- For 6-band model, PL peak wavelength is 150 nm too short
- About PL spectra, good agreement with experiment for 8-band model

• InGaAs/InGaAs QWs (L_w = 10 nm, ϵ = 1.65%)

• 10-nm red shift in calculated PL spectrum

- InAs/InGaAs QWs ($L_w = 6 \text{ nm}, \epsilon = 3.2\%$)
- 40-nm red shift in calculated PL spectrum
- Excellent agreement with experiment for 8-band model

5-3. Strain dependence of band edge optical properties

- Stronger quantum confinement for larger strain
- Difference between models becomes large around a strain of 2%.

5-4. Thickness dependence of PL peak wavelength

- InAs/InGaAs QWs (ϵ = 3.2%)
- > 100 nm too short for 6-band model
- Good agreement between experiment and 8-band model with D_{s.o.}

5-5. Absorption spectra

- InAs/InGaAs QWs ($\epsilon = 3.2\%$)
- Good agreement between experiment and 8-band model with $D_{s.o.}$

6. Conclusion

- 6- and 8-band *k p* theory
 - Highly strained In(Ga)As/InGaAs QWs (strain up to 3.2%)
- Interaction between strain and spin-orbit coupling $(D_{s.o.})$
 - 8-band model with $D_{s.o.}$ for InGaAs/InGaAs QWs with the strain larger than 2%

