

Static and dynamic performance optimisation of a 1.3 µm GalnNAs ridge waveguide laser

Jun Jun Lim, Roderick MacKenzie, Slawomir Sujecki, Eric Larkins

Photonic and Radio Frequency Engineering Group, School of Electrical and Electronic Engineering University of Nottingham, Nottingham NG7 2RD

M. Dumitrescu

Optoelectronics Research Centre, Tampere University of Technology, FIN-33101 Tampere, Finland

S.M. Wang, M. Sadeghi, G. Adolfsson, J. Gustavsson, A. Larsson

Photonics Laboratory, Chalmers University of Technology, SE-41296 Göteborg, Sweden

We gratefully acknowledge the support of the European Commission through the FP6 IST project **FAST ACCESS** (IST-004772)

NUSOD, Nottingham – Sep. 1-5, 2008

Presentation Outline

- 1. Introduction
- **2.** Device structure
- 3. Design of high-speed lasers
- 4. Description of laser simulator
- 5. Optimisation of design parameters
- 6. Results
- 7. Conclusion

- Market growth of 10 Gb Ethernet is increasing growing demand for low cost transceivers which require uncooled directly modulated lasers
- Large bandgap bowing of dilute nitride material system allows long wavelength lasers to be grown on GaAs substrates
- Low cost alternative to InP lasers due to cheaper and larger GaAs wafers
- Dilute nitride lasers have a large conduction band offset good high temperature performance
- State-of-the-art devices have a maximum modulation bandwidth ~17 GHz at RT - can this performance be improved further?

Reference: Y.Q. Wei, et al., IEEE J. Quantum Electron. Vol. 42, p. 1274, 2006.

NUSOD, Nottingham - Sep. 1-5, 2008

Dilute Nitride Laser Structure

- Nottingham
- 7nm Ga_{0.61}In_{0.39}N_{0.012}As/GaAs DQW, Al_{0.50}Ga_{0.50}As cladding layers.
- Simulation parameters calibrated and good agreement with experiment obtained. τ_{SRH} =0.5 ns and C_{CHSH}=1x10⁻²⁸ cm⁶s⁻¹.

Reference: *Y.Q. Wei et al.*, *Appl. Phys. Lett.*, *Vol. 88*, 051103, 2006.

NUSOD, Nottingham - Sep. 1-5, 2008

 Analytical expression derived from small-signal analysis of carrier and photon rate equations:

$$f_{R} = \frac{1}{2\pi} \sqrt{\frac{v_{g} \Gamma \frac{dg}{dn}}{eV_{act}}} (I - I_{th})$$

- Differential gain controlled by QW design
- Minimum length limited by self-heating effect
- Confinement factor is main design parameter controlling the modulation bandwidth

- Γ can be increased by reducing the index of the cladding layer – this results in unacceptable increase in far-field divergence (target FF-FWHM <35°)
- Two approaches to simultaneously achieve high confinement factor and low vertical divergence :
 - (a) Low index layer inserted in the cladding layers - more suited for high-power lasers
 - (b) Low index layer inserted between GRIN and cladding layers - preferred for highspeed lasers due to fewer interfaces, reduced series resistance

Reference:

- 1. J. Temmyo and M. Sugo, Electron. Lett., Vol. 31, No. 8, p. 642, 1995.
- 2. G.W. Yang, et al., J. Appl. Phys., Vol. 83, No. 1, p. 8, 1998.
- 3. M. Dumitrescu, et al., Opt. Quantum Electron., Vol. 31, p. 1009, 1999.

NUSOD, Nottingham – Sep. 1-5, 2008

3.8

Description of 2D Laser Simulator

Poisson's Equation

 $\nabla \cdot (\varepsilon_r \varepsilon_0 \nabla \phi) + q(p - n + N_D^+ - N_A^-) = 0$

Continuity Equations

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J_n} - (R_{nr} + R_{spont} + R_{cap}^n) \qquad \frac{\partial n_w}{\partial t} = \frac{1}{q} \frac{dJ_{nw}}{dx} - (R_{nr}^{qw} + R_{spont}^{qw} + R_{stim}^{qw} - R_{cap}^n)$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J_p} - (R_{nr} + R_{spont} + R_{cap}^p) \qquad \frac{\partial p_w}{\partial t} = \frac{1}{q} \frac{dJ_{pw}}{dx} - (R_{nr}^{qw} + R_{spont}^{qw} + R_{stim}^{qw} - R_{cap}^p)$$

Photon Rate Equations

 $\frac{dS_m}{dt} = v_g \left(G_m - \alpha\right) S_m + \beta r_{spont}^{qw}$

Optical model $\nabla^2 \Phi + (k(x, y)^2 - \beta(\omega)^2) \Phi = 0$

Thermal model $\rho_L C_L \frac{\partial T}{\partial t} = \nabla \cdot (\kappa \nabla T) + H$

Small-signal Analysis

- Follow approach by S. Laux, IEEE Trans. Electron. Devices, Vol. 32, No. 10, p. 2028, 1985 – Sinusoidal Steady-State Analysis (S³A)
- Perturbation to steady-state solution of the form $x = \overline{x} + \widetilde{x} \exp(j\omega t)$
- Insert into device equations and perform Taylor series expansion keeping first order terms of exp(*jωt*)

Large-signal Analysis

Use backward Euler method (implicit scheme) – unconditionally stable

Vary W_{LI} and x_{LI}

Low index layer structure

- Fixed x_{cl}=0.40, W_{cl}=800nm
- $x_{LI} = 0.80$ gives highest Γ
- FF-FWHM <35° achievable with W_{LI}=600nm

Refractive Index

Cladding layer

Cladding layer

- Final structure has a confinement factor of 4.0% (compared to 3.5% for reference structure)
- Vertical FF-FWHM is ~12° smaller than the reference structure

Small-signal analysis

Reference structure

Reference: Y.O. Wei, et al., IEEE J. Quantum Electron. Vol. 42, p. 1274, 2006.

NUSOD, Nottingham – Sep. 1-5, 2008

The University of Nottingham

- Static and dynamic performance
- 3.4 x 350 µm² RW laser

Power

NUSOD, Nottingham – Sep. 1-5, 2008

Bandwidth

Large-signal analysis

- 3.4 x 350 μm² RW laser from reference structure
- Simulation against experiment at 10Gb/s (passed through a 7.5GHz Bessel filter)

Experiment

Reference: J.S. Gustavsson, et al., Electron. Lett., 42, 20061517, 2006

NUSOD, Nottingham - Sep. 1-5, 2008

- 3.4 x 350 μm² RW laser
- Optimised structure has better high-temperature performance (less ringing)

The University of

Nottingham

NUSOD, Nottingham – Sep. 1-5, 2008

Conclusion

- The layer structure of a GaInNAs EEL has been optimised by inserting a low-index layer between the GRIN waveguide and cladding layer to achieve high Γ and low vertical divergence.
- Optimised structure has improved performance in terms of threshold current, slope efficiency, modulation bandwidth and improved large-signal digital modulation response at high temperature.
- Small-signal and large-signal models developed and agree with experiment.
- Even better performance possible as material quality continues to improve.