

Improvement of the beam Improvement of the beam quality of a broad-area diode quality of a broad-area diode laser using asymmetric laser using asymmetric feedback from external cavity feedback from external cavity

Lei Lang, Jun Jun Lim, Slawomir Sujecki, Eric Larkins

Photonic and Radio Frequency Engineering Group School of Electrical and Electronic Engineering University of Nottingham, Nottingham NG7 2RD

We gratefully acknowledge the support of the European Commission through the FP6 IST project *WWW.BRIGHTER.EU* **(IST-035266)**

- **1. Introduction**
- **2. Description of External Cavity Laser Model**
- **3. Results**
- **4. Conclusion**

Introduction Introduction

Asymmetric Feedback from an External Cavity

 \blacklozenge **Asymmetric Feedback technique is also called self-injection locking (SIL). This is attractive because no additional laser processing is required.**

 \blacklozenge **A mirror stripe is placed inside of the external cavity to select one of the lateral modes. This increases the modal discrimination with respect to the other modes.**

 \blacklozenge **This cavity is optimized by adjusting the width and position of the mirror stripe.**

Introduction Introduction

Physical Layout for Simulation

The broad-area laser diode model is coupled with a free space propagation model to build up the whole simulation structure.

1. Introduction

2. Description of External Cavity Laser Model

- **3. Results**
- **4. Conclusion**

Broad Area Laser Diode Model

 \blacklozenge **Electrical slice model - 1D (x) unipolar carrier-diffusion equation:**

$$
D_e \frac{d^2}{dx^2} N(x) = -\frac{J(x)}{qd} + \frac{N(x)}{\tau_n} + v_g g(x) \Psi(x) N_s
$$

- \blacklozenge *J(x)* **is assumed fixed**
	- **Constant inside stripe**
	- **Zero outside stripe**
- \blacklozenge **Gain calculated using parabolic approximation for conduction bands and 4x4 k.p model for valence bands.**
- \blacklozenge **Optical model - 2D (xz) wide-angle FD-BPM with PML**

The Universitu of Nottingham

External Cavity Model

 \blacklozenge **The external optics model uses the Fourier Transform (FT) Method. Initial input field FT:**

1. Introduction

2. Description of External Cavity Laser Model

- **3. Results**
- **4. Conclusion**

- **BA laser: W = 100** μ**m, L = 1 mm**
- **Initial field – "top hat profile"**
- **Simulation converges for a specific reflector width and position**
	- **Reflector width = 0.74 mm**
	- **Position of reflector = 2.97 mm from centre**

NUSOD, Nottingham – Sep. 1-5, 2008

Near field profile

Far field profile

Mirror position and width

The width of the mirror stripe is estimated from the width of the lobe in the mirror plane.

The reflector position is chosen by starting moving the stripe from the edge to the centre of the device until stable operation is achieved.

The injection current density is kept constant (3kA/cm 2).

Physical Layout for Simulation

Briefly look back to the simulation structure.

1st Roundtrip Forward Propagation

Propagation Position (m)

1st Roundtrip Backward Propagation

Propagation Position (m)

2nd Roundtrip Forward Propagation

Propagation Position (m)

2nd Roundtrip Backward Propagation

Propagation Position (m)

3rd Roundtrip Forward Propagation

Propagation Position (m)

3rd Roundtrip Backward Propagation

Converged Roundtrip Forward Propagation

Propagation Position (m)

Converged Roundtrip Backward Propagation

Mirror Position Sensitivity (Optimum: Position 2.93mm, Width 0.74mm)

Mirror Width Sensitivity

Different initial excitation

Lobe Position depend on lateral mode number

Here, the 11th order mode is selected.

10th order mode Selection

Can the other modes (e.g. 10th order mode) be selected?

The initial guess of 10th order mode is chosen to determine the mirror position/width. A converged solution is also obtained.

Is the situation that simple?

- **1. Introduction**
- **2. Description of External Cavity Laser Model**
- **3. Results**
- **4. Conclusion**

- In this work, the asymmetric feedback from an external cavity is used to select an appropriate lateral mode.
- The mirror width and position is adjusted carefully to a optimum operating condition.
- The selected lateral mode dominates the lasing process inside the laser cavity and the other modes are then suppressed efficiently. The beam quality is improved significantly.

Thank you!

Questions?