TiberCAD TiberCAD: towards : towards multiscale multiscale simulation of optoelectronic devices simulation of optoelectronic devices

M. Auf der Maur,

M. Povolotskyi, F. Sacconi, A. Pecchia, G. Romano, G. Penazzi and Aldo Di Carlo

> *Department of Electronic Engineering, University of Rome "Tor Vergata", Italy*

- Introduction / the TiberCAD project
- Physical models
- Numerical implementation / Software structure
- Simulation examples
- \bullet **Conclusions**

Introduction: What's new in electronic devices Introduction: What's new in electronic devices

Introduction Introduction: Multiscale Multiscale scenario scenario

The multiscale multiscale approach, quite common in material science, has not been approach, quite common in material science, has not been used systematically for electronic transport ! used systematically for electronic transport !

Introduction: Multiphysics

Different physical models are needed to describe electronic devices:

MOSFET

Polariton/VCSEL Polariton/VCSEL

SiGe S/D **Strained Silicon**

- *Classical/Quantum transport Classical/Quantum transport*
- *Strain*
- *Temperature Temperature*
- *Atomistic details Atomistic details*
- *Classical/Quantum transport Classical/Quantum transport*
- *Electrons/holes/ Electrons/holes/excitons excitons (polaritons polaritons)*
- *Strain*
- *Temperature Temperature*
- *Electromagnetic field Electromagnetic field*

Introduction: Multiscale/multiphysics

Physical Models: strain (linear) Physical Models: strain (linear)

Povolotskyi-Di Carlo, JAP **100**, 063514 (2006)

Physical Models: strain (non Physical Models: strain (non-linear) linear)

University of Rome "Tor Vergata" - Dep. Electronic Engineering

Povolotskyi-Di Carlo, JAP **100**, 063514 (2006)

Physical Models: Particle transport Physical Models: Particle transport

- \bullet Particle transport is treated in the drift-diffusion approximation
	- Particle flux is written in terms of the electro-chemical potentials, eg.

$$
j_n = \mu_n n \nabla \phi_n, \quad j_p = -\mu_p p \nabla \phi_p
$$

Particle densities are modeled assuming local equilibrium, eg. electrons:

$$
n = N_c F_{1/2} \left(\frac{\phi_n - E_c}{k_B T} \right)
$$

Band parameters are calculated from **k·p** parametrisations including strain

For electrons/holes:
$$
\nabla j_n = \nabla (\mu_n n \nabla \phi_n) = -R(n, p)
$$

$$
\nabla j_p = \nabla \left(-\mu_p p \nabla \phi_p\right) = -R(n, p)
$$

+ Poisson equation
$$
\nabla (e \nabla \phi - P) = e(n - p + N_a - N_d^+)
$$

Piezo- and pyropolarization

 \bullet Exciton transport is implemented in TiberCAD and can be coupled to electron/hole transport by means of exciton generation/dissociation

Physical Models: Thermal transport Physical Models: Thermal transport

- \bullet Self-heating is a critical issue for high-power devices, but also in highly integrated circuits (could be limiting factor)
- \bullet Implementation of thermal transport is based on a thermodynamic model Continuity equation for the energy flux *j*u:

$$
\frac{\partial u}{\partial t} - \nabla j^u = \left(\frac{\partial u}{\partial t}\right)_{rad} \implies c\frac{\partial T}{\partial t} + \nabla (K\nabla T) = H
$$

Heat source term can be decomposed into different contributions:

•Joule

•Peltier-Thomson

•Generation-recombination effect

 \bullet Electron/hole flux has to be rewritten to include Seebeck effect:

$$
j_n = \mu_n n (\nabla \phi_n + P_n \nabla T)
$$

$$
j_p = -\mu_p p (\nabla \phi_p + P_p \nabla T)
$$

*P*_{n,p}: thermoelectric powers

Physical Models: Quantum mechanics Physical Models: Quantum mechanics

- \bullet Quantum mechanical models are based on envelope function approximation (single- and multiband **k·p** approach):
	- Expand the single particle states in bulk Bloch states

$$
\psi(\mathbf{r}) = \sum_{n} f^{n}(\mathbf{r}) u_{\mathbf{k}=0}^{n}(\mathbf{r})
$$

– Solve a Schrödinger equation for the envelope functions

$$
\vec{Hf} = \vec{Ef}, \quad \text{eg.} \quad -\frac{\hbar^2}{2} \nabla \left(\frac{1}{m(r)} \nabla f_c(r) \right) + E_c(r) f_c(r) = E f_c(r)
$$

- \checkmark Calculate eigenstates of confined particles
- \checkmark Calculate optical transition probabilities
- \checkmark Calculate valence and conduction band parameters in presence of strain
- \checkmark Calculate quantum mechanical particle density:

$$
n = \sum_{i} \sum_{\mathbf{k} \in BZ} \left| \psi_{i,\mathbf{k}}(\mathbf{x}) \right|^2 \frac{1}{1 + e^{(E - \mu_e(\mathbf{x}))/kT}}
$$

Performed on an adaptative grid

Physical Models: Physical Models: Atomistics Atomistics

 \bullet Tight-binding approach: expand wave function in atomic orbitals

Matrix elements can be calculated by using density functional theory (DFTB in collaboration with Bremen, Frauenheim) or used as empirical fitting parameters (Empirical Tight Binding).

TiberCAD TiberCAD implements: implements:

- Strain (including piezoelectric effect)
- Semi-classical transport of electrons / holes / excitons (+ Poisson)
- Heat transport
- Quantum mechanics based on **k.p** envelope function approximation
- Atomistic description via Density Functional Tight-Binding (DFTB, from Frauenheim group, Bremen) or Empirical Tight-Binding, including Quantum Molecular Dynamics
- –*Quantum transport (via NEGF) has not been fully integrated*
- *1D, 2D, 3D and cylindrical symmetry*
- *Adaptive meshes*
- *Written to run in parallel (but not yet tested)*
- *Input parser with a syntax similar to commercial TCAD*
- *Interfaces with some of commercial TCAD*
- *Possibility to link user defined models*

Implementation: Numerics

- \bullet All PDE based models are discretized by means of the **finite element method** (FEM) using the Fermi levels as variables! (in contrast to conventional approaches which us box integration and densities as variables)
- \bullet **ill-conditioned Jacobian** as the diffusion coefficients in the linearized continuity equations are proportional to the particle densities.
- \bullet The conditioning is improved by an appropriate **diagonal scaling**.
- \bullet The linear system is solved by means of **iterative solvers** (bi-conjugate gradient with ILU preconditioning), using the open-source library PETSc
- \bullet **Numeric Gauss integration** for integrals

Possible improvements:

- \bullet Further stabilization could be achieved using (pseudo-)residual-free bubbles
- \bullet Analytic integration where possible

Implementation: TiberCAD structure

Mathematical libraries Mathematical libraries

Development is done in Linux, porting to other UNIX-like environments is planned and to Windows has been achieved

TiberCAD TiberCAD 1.0 is freely downloadable at 1.0 is freely downloadable at www.tibercad.org www.tibercad.org

GaN/AlGaN GaN/AlGaN nanocolumns nanocolumns

GaN/AlGaN GaN/AlGaN nanowires are becoming nanowires are becoming important in LED and single photon important in LED and single photon source applications source applications

Johnson et al. Nature materials 1, 106 (2002) Ristic et al. phys. stat. sol. 202, 367 (2005)

GaN

n-AlGaN

Cathode

p-AlGaN

Anode

Sekiguchi et al. Electronics Letters (2008)

Nanocolumn Nanocolumn: k•p emission spectra emission spectra

- •6x6 k.p model for valence band and single band for conduction band.
- •modified Hamiltonian to include strain effects (Bir-Pikus)
- \bullet A blue shift is observed due to compressive strain

Conical Conical GaN dot in nanowire dot in nanowire

- 3D simulation of AlGaN nanocolumn with conic quantum dot
- solve strain, Drift-Diffusion/Poisson, self-heating and Schrödinger equation

Strain and Polarization Strain and Polarization

Strain - Rel. volumicPiezo- and Pyro-Piezo- and Pyro-
polarization P_z : Electrostatic potential: change (dV/V): a) $b)$ \overline{a} deviceair P_{2} [C/m²] Potential [V] -0.024 -0.028 0.5 -0.032 0.3 $Tr(\varepsilon)$ -0.036 0.1 -0.04 -0.1 0.0065 -0.044 -0.3 -0.048 0.0045 -0.5 -0.052 -0.7 0.0025 -0.056 0.0005 -0.0015 -0.0035 -0.0055 -0.0075 substrate -0.0095 -0.0115

Quantum states Quantum states

1st electron state:

2nd electron state:

Spatial separation of electrons and holes mainly due to electric polarization

University of Rome "Tor Vergata" - Dep. Electronic Engineering

Charge density at 4.5 V Charge density at 4.5 V

Quantum density in the dot

Temperature distribution Temperature distribution

Electroluminescence of conic quantum dot

Energy [eV]

A 0.5 eV blue shift of the fundamental emission peak is obtained going from 3.7V (below threshold) to 4.1 (above threshold) due to the combined effect of polarization and screening .

Due to the screening of the polarization field we have also an increase of the optical power

InAs quantum dot LASER quantum dot LASER

- 2D simulation of simplified InAs QDot LASER structure
- solve strain, Drift-Diffusion/Poisson and Schrödinger equation

M. Buda et. al., IEEE Journal of Quantum Electronics, 2003

Current density at 1 V Current density at 1 V **Current is confined in the wires Total current: 2 mA/cm** $(A/cm(2)$ 24.1 455. 0.00358 0.06γ5 1.27

Emission spectra Emission spectra

- Multiscale/multiphysics is requested in real modern electronic devices where electronics, optics, chemistry (and biology) are linked together
- TiberCAD is one of the first attempts to respond to this request
- \bullet Much effort is still needed to arrive at a true multiscale integration for transport simulations

Additional details on http://www.tibercad.org