

A Novel Finite-Element Formulation Applied to Wave Propagation in Optically Large **Structures**

Martin Loeser, Bernd Witzigmann

ETH Zurich

Switzerland

loeser@iis.ee.ethz.ch, bernd@iis.ee.ethz.ch

Motivation

- Challenge: Optical Simulation of large (1000s xλ) optoelectronic devices (LEDs, BA Lasers)
- Usually two different approaches
 - FEM/FDTD
 - Accurate
 - Considers wave nature
 - Computationally expensive
 - Ray Tracing
 - Fast
 - Not necessarily robust
 - Loss of wave nature

Krames et al., 1999

THE REAL PROPERTY.

Ultra-Weak Variational Formulation*

 Discontinuous Galerkin FE-Method for inhomogeneous Helmholtz equation

$$\begin{aligned} \Delta u + \omega^2 u &= -f \text{ in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}} + i\omega u &= 0 \text{ on } \partial \Omega \end{aligned}$$

- UWVF Solves problem on the boundaries of the domain
- Base functions η satisfy homogeneous Helmholtz equation on each patch but may be discontinuous across boundaries
- Linear equation system to be solved with GMRES

*: Huttunen et al. J Comp Phys 223, 2007

UD ICH STR UDIER

Variational Formulation

$$\sum_{k} \int_{\partial \Omega_{k}} x_{k} \overline{\left(\frac{-\partial \eta_{k}}{\partial \mathbf{n}} + i\omega \eta_{k}\right)} \, ds - \sum_{k,j} \int_{\Sigma_{kj}} x_{j} \overline{\left(\frac{\partial \eta_{k}}{\partial \mathbf{n}} + i\omega \eta_{k}\right)} \, ds = -2i\omega \sum_{k} \int_{\partial \Omega_{k}} f \overline{\eta_{k}} \, d\Omega, \ \forall \eta \in H$$
$$\eta_{k} = \eta|_{\Omega_{k}}, \ \Delta \eta_{k} + \omega^{2} \eta_{k} = 0 \text{ on } \Omega_{k} \qquad \qquad x_{k} := \frac{-\partial u}{\partial \mathbf{n}} + i\omega u \Big|_{\partial \Omega_{k}}$$

- Special choice of base functions
 - \rightarrow only boundary integrals on LHS
 - → here: plane waves, #angles user choice
- Solution in source regions requires additional "traditional" FEM calculations
- Known numerical issue: ill-conditioning

UD HEATT AND MAN

Benchmark Example

- Problem dimension: $1'000\lambda \times 1'000\lambda$
- Source region in center of domain
- UWVF (ca. 50xλ)
 - 1.4 million DoF
 - 543 million non-zero matrix entries
- FEM (λ/25)
 - 625 million DoF
 - 5625 million non-zero matrix entries

THE REAL PROPERTY.

Solution $(1000\lambda)^2$

- 35.6 Gbyte memory
- 25min. (8 processors)
- Relative Error < 1.5%</p>
- Standard FEM not applicable

ADDINI DA DINA

Accuracy in the Source Region

- Standard FEM for active region (spont. Emission sources)
- Typically small for OE devices
- Relative Error < 1.5%</p>

AD REAL PROPERTY

Performance 1: Parallelization

 PETSc Solver*: computation time
~ 1/n up to 8 processors.

*: www.mcs.anl.gov/petsc

CONTRACTOR OF

Performance 2: Information Reduction

- Accuracy of solution:
 - Discretization
 - #Angles for base function
- In many cases: only one dominant direction of propagation
- Memory reduction from 36GB to 17GB with same rel. error for (1000λ)² example.
- A priori or a posteriori

NORTHINGS.

Known Issue of UWVF—Matrix Condition

With increasing accuracy the matrix condition also increases.

Strategy to Control Matrix Condition

Dynamically adjust the number of base functions on each patch.

Simulation Example: 'LED' Simulation (I)

LED-like structure with large active region emitting into free space.

ADDINI THE OWNER

Extended Features: LED Simulation (II)

Inside semiconductor: standing wave pattern, waveguide effects.

AD REAL PROPERTY.

Extended Features: LED Simulation (III)

Computed and predicted radiation pattern match very well.

Conclusion and Outlook

- The UWVF as efficient strategy for solving the inhomogeneous Helmholtz equation on 'optically large' domains
- Two independent ways to reduce computation time
 - Parallelization
 - Information reduction
- Formalism applicable to LED-like structures
- Outlook: transition to 3-D domains, vectorial electromagnetics

UNRENT BURN