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Motivation
 Challenge: Optical Simulation of large (1000s xλ)

optoelectronic devices (LEDs, BA Lasers)
 Usually two different approaches

 FEM/FDTD
- Accurate
- Considers wave nature

- Computationally expensive

 Ray Tracing
- Fast
- Not necessarily robust

- Loss of wave nature
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Ultra-Weak Variational Formulation*
 Discontinuous Galerkin FE-Method for inhomogeneous

Helmholtz equation

 UWVF Solves problem on the boundaries of the domain
 Base functions η satisfy homogeneous Helmholtz equation

on each patch but may be discontinuous across boundaries
 Linear equation system to be solved with GMRES

Ω δΩ

*: Huttunen et al. J Comp Phys 223, 2007
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Variational Formulation

 Special choice of base functions
→ only boundary integrals on LHS
→ here: plane waves, #angles user choice

 Solution in source regions requires additional
“traditional” FEM calculations

 Known numerical issue: ill-conditioning
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Benchmark Example

 Problem dimension: 1’000λ 1’000λ
 Source region in center of domain
 UWVF (ca. 50xλ)

 1.4 million DoF

 543 million non-zero matrix entries

 FEM (λ/25)
 625 million DoF

 5625 million non-zero matrix entries
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Solution (1000λ)2 UWVF

Analytical

 35.6 Gbyte memory
 25min. (8 processors)
 Relative Error < 1.5%
 Standard FEM not

applicable
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Accuracy in the Source Region
FEM

Analytical

 Standard FEM for active
region (spont. Emission
sources)

 Typically small for OE
devices

 Relative Error < 1.5%
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Performance 1: Parallelization

*: www.mcs.anl.gov/petsc

 PETSc Solver*:
computation time
~ 1/n up to 8
processors.



9September 2,  2008 Martin Loeser, Bernd Witzigmann

Performance 2: Information Reduction
 Accuracy of solution:

 Discretization

 #Angles for base function

 In many cases: only one
dominant direction of
propagation

 Memory reduction from
36GB to 17GB with same
rel. error for (1000λ)2

example.

 A priori or a posteriori
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Known Issue of UWVF—Matrix Condition

With increasing accuracy the matrix condition also increases.
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Strategy to Control Matrix Condition

Dynamically adjust the number of base functions on each patch.



12September 2,  2008 Martin Loeser, Bernd Witzigmann

Simulation Example: ‘LED’ Simulation (I)

500 λ

100 λ

active region
(n=3)

Semiconductor
(n=3)

Air (n=1)

LED-like structure with large active region emitting into free space.
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Extended Features: LED Simulation (II)

 Inside semiconductor: standing wave pattern, waveguide
effects.

LED full structure Zoom
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Extended Features: LED Simulation (III)

Computed and predicted radiation pattern match very well.
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Conclusion and Outlook

 The UWVF as efficient strategy for solving the
inhomogeneous Helmholtz equation on ‘optically
large’ domains

 Two independent ways to reduce computation time
 Parallelization

 Information reduction

 Formalism applicable to LED-like structures
 Outlook: transition to 3-D domains, vectorial

electromagnetics


