8th International Conference on Numerical Simulation of Optoelectronic Devices

Analysis of the Leakage Current of GalnP/AlGaInP High Power Lasers with a self-consistent Simulation Model

<u>J. M.G. Tijero¹</u>, H. Odriozola¹, I. Esquivias¹, A. Martín-Mínguez¹, P. Brick², M. Reufer², M. Bou Sanayeh², A. Gomez-Iglesias², and N. Linder²

⁽¹⁾ E. T. S. I. Telecomunicación, Univ. Politécnica de Madrid. Madrid, Spain.

⁽²⁾ Osram Opto Semiconductors, Regensburg, Germany.

Work supported by IST project 2005-035266 WWW.BRIGHTER:EU, and by MEC (Spain) projects TEC2006-13887 and TEC2007-29619.

- Introduction and goals
- Experimental characterisation
- Simulation model
- Analysis of leakage current: sensitivity to model parameters
- Conclusions

High Power Red Lasers

Main applications:

- Photodynamic Therapy
- □ Fluorescence Imaging of Cancer
- Laser Display Technology
- Pumping of Solid State Lasers
- Main problems:
 - □ High dependence of threshold current with temperature
 - Decrease of slope efficiency with temperature
 - Catastrophical Optical Damage
 - Gradual degradation

GaInP/AIGaInP Red Lasers

NUSOD'08 Nottingham. September 08-4

Leakage Current in Red Lasers

Leakage current depends on: band-offset, mobilities, carrier lifetime....

- Analyze leakage current with a selfconsistent laser model
- Evaluate the sensitivity of the results to the values of some material parameters
- Evaluate the effect of some design parameters: p-doping

Laser Devices and Experimental characterisation

Broad Area Lasers 100 µm x 1.2 mm

Wavelength: 635 nm

NUSOD'08 Nottingham. September 08-7

Self-consistent laser model

Main features:

- Complete semiconductor equations: Poisson + continuity electrons
 - + continuity holes
- QW carrier capture/escape processes
- Gain calculations using parabolic fitting of VB structure (calculated by k.p band mixing model)
- $\square \quad \Gamma \text{ and X valleys in the CB}$

Model for multiple valleys in CB

Assumption: thermal equilibrium between electrons in different valleys
Single CB minimum with equivalent effective mass and mobility

 \Box m_e^{eq} and μ_e^{eq} are calculated analytically $m_e^{eq} = f_m(m_e^X, m_e^\Gamma, E_C^X - E_C^\Gamma, T)$

Equivalent effective electron mass

 $\mu_n^{eq} = f_{\mu}(\mu_n^X, \mu_n^{\Gamma}, E_C^X - E_C^{\Gamma}, T)$

Main model parameters affecting leakage

- Electron/ hole mobilities
- Electron/ hole capture times
- Band line-ups
- Γ and X valleys effective masses
- SRH recombination parameters: trap density, trap energy, trap carrier capture section

Band profiles under bias

No SRH recombination

✓ Low I_{th}; weak temperature dependence
✓ High η_S; weak temperature dependence

NUSOD'08 Nottingham. September 08-12

No SRH recombination

NUSOD'08 Nottingham. September 08-13

Role of SRH recombination

Role of electron capture time

(Increasing electron density in confinement layers)

Lower Electric field $(J_p = qp\mu_pE)$

μ_n (minority) $\uparrow \longrightarrow I_{leakage}$ (diffusion) \uparrow

Higher diffusion coefficient $(J_{n (dif)} = \mu_n kTdn/dx)$

Role of carrier mobility in p-clad

μ_p (majority) μ_n (minority) Slope efficiency (W/A) Slope efficiency (W/A) 1.2 50 cm²V⁻¹s⁻¹ 1.2 20 cm²V⁻¹s⁻¹ 1 1 $\mu_{p} = 5$ μ_n = 300 μ_p = 10 0.8 0.8 = 150 μ_n **Increasing mobility** 0.6 **Increasing mobility** 0.6 0.4 0.4 0 20 40 60 20 40 60 0 **Temperature (°C) Temperature (°C)**

Role of doping in p-cladding

Role of doping in p-cladding

✓ Increasing p-doping reduces drift leakage

Conclusions

- Self-consistent model predicts leakage current over pcladding
- Leakage current is very sensitive to model parameters
- Need to determine basic material parameters to optimize red lasers
- Simulation emphasizes the Important role of increasing p-doping level.

Role of doping in p-cladding

Role of electron capture time

Role of hole mobility in p-clad

Role of electron mobility in p-clad

Role of electron mobility in p-clad

Role of hole mobility in p-clad

